

Why MRI?

- Excellent anatomical display
- Germinal matrix zones, cortical plate, basal ganglia, brainstem, cerebellar anatomy well demonstrated
- High sensitivity for blood, calcifications, fat
- Less affected by maternal obesity, reduced fetal liquor, low lie or poor fetal position

Indications for fMRI

- Maternal/fetal conditions (oligohydramnios, fetal lie)
- Brain anomaly seen on USS, diagnosis uncertain
- Suspected familial genetic syndromes
- When detection of additional abnormality on MRI may carry profound prognostic/counselling implications (e.g. sulcation disorder associated with mild VM)
- Maternal trauma/insult
- Intervention planning

Timing of MRI

- Anomaly US at 19-20 wks
- If abnormal, MRI undertaken subsequently
- Benefits of early MRI include early confirmation of suspected pathology
- But MRI too early risks failure to detect neuronal migrational abnormalities before cortical development is complete
- Preparing for EXIT procedure needs late scan

Primary indications for fetal MRI

- Ventriculomegaly
- Congenital abnormalities
- · Acquired lesions

Ventriculomegaly

- Occurs in 1-2/1000 pregnancies
- Mild VM associated with good prognosis
- When >12-14mm, increased risk
- Clinically relevant abnormalities in up to 17%
- Up to 6% have congenital abnormality
- MRI used to detect associated anomalies that carry a poorer prognosis

Congenital abnormalities

- Disorders of brain formation occur at the varying stages of maturation
- Risk of MRI too early is that errors of cortical formation, organisation, development may be missed before 21-22 weeks
- If equivocal findings, repeat MRI in 2-3 weeks

Congenital anomalies

- Failure of dorsal induction
- Failure of ventral induction
- Failure of neuronal proliferation, differentiation and histiogenesis
- Failure of neuronal migration

Failure of dorsal induction

- Failure of neural tube closure: 4-6 wks GA
- Neural tube defects readily identified by US
- MRI is of variable quality in spine
- Identifying level of lesion is of prime importance for prognostication US and MRI equivalent
- MRI can identify neural elements entering sac

Myelomeningocoele + Chiari 2

Failure of ventral induction

- Occurs between 6-12 wks GA
- Errors of prosencephalic, mesencephalic and rhombencephalic development are generally better assessed by MRI
- Callosal status >20 weeks (when myelination commences) and complex posterior fossa lesions best assessed by MRI

Failure of neuronal proliferation, differentiation and histiogenesis

- Begins between 7-24 wks, continues into post natal life
- Wide range of abnormalities (micrencephaly, megalencephaly, congenital tumours, vascular malformations) better assessed by MRI
- MRI more accurately characterises intra-tumoural blood, fat, calcification, subependymal nodules

Failure of neuronal migration

- Occurs between 12 -24wks GA
- Defects give rise to lissencephaly, schizencephaly, polymicrogyria, pachygyria, GM heterotopia
- US detects these with reasonable sensitivity
- MRI demonstrates waves of migrating neurones, tracks cortical development

Acquired lesions

- Ischaemic injury
- Infection
- Trauma
- Haemorrhage
- Venous thrombosis

Ischaemic injury

- Established insults equally well detected by US and MRI
- DWI allows sensitive, early detection of ischaemic injury
- Location of injury determined in part by GA

Infection

- US well suited to detecting associated pathology such as VM, parenchymal calcifications, striatal vasculopathy
- MRI can demonstrate subtle cystic lesions, cortical developmental and post fossa defects

Trauma

 Maternal abdominal trauma may rarely cause intracranial haemorrhage (SDH, EDH, parenchymal haematoma) or ischaemic pathology (infarct, schizencephaly, hydranencephaly)

Haemorrhage

- Properties of blood products allow ready detection of recent haematomas by MRI (T1 hyperintense, T2 hypo/iso-intense)
- Haemosiderin allows ready detection of older haematomas on GE images

Venous sinus thrombosis: US = ?cyst

Summary

- MRI is complimentary to US
- Use MRI to clarify anatomy, characterize tissue elements and assess ischaemic injury
- Multidisciplinary approach
- Discuss findings with professional who will be doing the counselling (neurosurgeon/FM)
- Potential for rapid evolution of techniques and applications in the near future

