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Abstract
New discoveries and technologies have begun to change paradigms of urothelial cancer therapy in recent years. One of the 
novel techniques which emerged in the imaging community is radiomics, which refers to the high-throughput extraction 
of quantitative image features from medical images. Radiomics, being noninvasive and easy to perform, has shown great 
potential in oncology by providing valuable information about tumor type, aggressiveness, progression, response to treat-
ment and prognosis and enabling us to gain insights into the true utility of personalized medicine in the management of 
cancer in the near future. With rapid development in this area, radiomics has already been applied in urothelial cancer to 
predict pathological grade, clinical stage, lymph node metastasis and treatment response demonstrating promising results. 
In this review, we highlight advances in clinical applications of radiomics in urothelial cancer, discuss about the challenges 
and implications of radiomics for radiologists and suggest the future directions that we could move toward in order to fully 
realize the potentials of radiomics to improve personalized management of patients with urothelial cancer.

Keywords Urothelial cancer · Radiomics · Imaging biomarker · Precision medicine

Introduction

Urothelial cancer is a common malignancy worldwide. More 
than 90% of the cases are bladder cancer while upper tract 
urothelial cancer (UTUC) is a rare subset [1]. Bladder cancer 
is the sixth most common cancer in the USA with an estima-
tion of 81,000 new cases and 17,000 deaths each year, and 
the standardized mortality rate varies from 2 to 10/100,000 
per year in men and 0.5 to 4/100,000 per year in women [2, 
3]. According to the National Central Cancer Registry of 
China, the new cases and deaths for bladder cancer are about 
80,500 cases and 32,900 cases, respectively, with an upward 
trend in recent years [4]. Over the past three decades, few 
signs of progress have been made in the treatment for urothe-
lial cancer. For patients with nonmuscle-invasive bladder 
cancer, around one-third of patients experience recurrences 

or progression despite receiving standard treatment. The 
5-year survival of patients with muscle-invasive bladder 
cancer is less than 50%, and the median overall survival 
of patients with advanced or metastatic bladder cancer is 
about 15 months [5, 6]. The deadlock of urothelial cancer 
treatment has been broken with significant advances in our 
understanding of underlying tumor biology and immunology 
in recent years. The advent of immune checkpoint inhibitors 
(ICIs) including anti-programmed cell death 1 (PD-1) and 
anti-programmed cell-death ligand 1 (PD-L1) antibodies has 
revolutionized the treatment for many advanced solid tumors 
including urothelial cancer [7]. In spite of dramatic improve-
ments in clinical outcomes in certain patients, there are still 
quite a few important unmet clinical needs in urothelial 
cancer management, for example, how to identify patients 
most likely to benefit from ICIs and how to predict treatment 
response for individuals [8]. It is necessary to develop new 
tools that have the potential to tackle those difficulties in 
tailoring treatment for each patient with urothelial cancer, 
especially in the era of precision medicine.

A wide range of “-omic” technologies, such as genom-
ics and proteomics, have been investigated in the field of 
oncology to improve current biomarkers for the diagnosis 
and therapy of tumors including urothelial cancer. The 
term “radiomics” has been introduced several years ago, 
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and it has become a novel research field with rapid devel-
opment. Radiomics refers to analysis and translation of 
medical images into mineable and measurable high-dimen-
sional data producing quantitative features in relation to 
prediction targets such as gene expression and clinical out-
comes [9, 10]. Radiomics generally involves five major 
steps: data selection, medical imaging, feature extraction, 
exploratory analysis and modeling. Figure 1 generally 
describes the process. The whole process mainly relies on 
computer algorithms rather than human visual assessment, 
and this advantage of quantitative analysis allows radiom-
ics to reveal information related to cellular and molecu-
lar properties of the tissue that may not be perceived by 
human naked eyes [11]. As tumors are extremely hetero-
geneous, a biopsy of a limited tissue sample is unlikely to 
represent the entire tumor. Unlike biopsy, radiomics can 

examine a tumor as a whole and evaluate intratumoral het-
erogeneity at the same time [12]. These unique abilities of 
radiomics allow it to be applied as a promising biomarker 
to noninvasively indicate biological processes, pathologi-
cal changes or responses to therapeutic intervention.

Up to now, many published papers have demonstrated 
the huge potential of radiomics to improve clinical diagno-
sis, disease monitoring and outcome predictions in various 
solid tumors including urothelial cancer. In this review, 
we briefly summarize the current clinical applications of 
radiomics in urothelial cancer along with the latest devel-
opment in the field. Then, we discuss the challenges we 
met in this field and the implications for radiologists. At 
last, we offer our perspectives of future research directions 
of radiomics in urothelial cancer.

Fig. 1  Radiomics in urothelial cancer. Representative images of a bladder cancer, with region of interest (ROI) segmentation shown in red fol-
lowed by feature extraction, feature selection and model construction
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Radiomics applications in urothelial cancer

The past few years have witnessed considerable scientific 
advances in applications of artificial intelligence in human 
malignant neoplasms. Different technical methods includ-
ing texture analysis, machine learning, deep learning and 
radiomics have been employed in studies regarding urothe-
lial cancer. We would like to focus on radiomics studies in 
this review but we will also mention related studies using 
other technical methods as well, so as to give a compre-
hensive review of achievements in this filed in the last 
several years. In the following paragraphs, we are going 
to group these studies by the targeted clinical question and 
analyze in detail the data related to each topic.

Evaluation of pathological grade

Pathological grade of urothelial cancer has important 
implications for prognosis and treatment selection. Low-
grade urothelial cancer has a lower rate of recurrence and 
stage progression, and it could be treated with less inva-
sive techniques [13]. A few studies have explored the fea-
sibility of texture analysis, machine learning and radiom-
ics to distinguish between low- and high-grade urothelial 
cancer. A study by our group in 105 patients with urothe-
lial carcinoma found that low-grade tumors demonstrated 
lower texture features of mean, entropy and mean of posi-
tive pixels (MPP) quantified from CT images and MPP 
could differentiate low- from high-grade tumors with an 
area under the curve (AUC) of 0.779 [14]. Mammen et al. 
performed a similar texture analysis of CT scans of 48 
patients with UTUC and found entropy was also greater 
in high-grade tumors with an AUC of 0.83 [15]. In a study 
by Zhang et al. in 61 patients with bladder cancer, 102 
texture features were extracted from diffusion-weighted 
images (DWI) and apparent diffusion coefficient (ADC) 
maps, 47 of which were found to be significantly different 
between low- and high-grade tumors [16]. By the method 
of support vector machine with recursive feature elimina-
tion (SVM-RFE), 22 features were selected to build the 
classifier and reached an AUC of 0.861. Wang et al. con-
ducted a similar but more comprehensive radiomics analy-
sis of MRI images for preoperative evaluation of patho-
logical grade [17]. They examined T2-weighted (T2W), 
DWI and ADC maps of 70 patients and validated them in 
a cohort of 30 patients with bladder cancer. Multimodal 
features were combined to construct radiomics models 
which achieved an AUC around 0.92 in both training and 
validation cohorts. The above studies revealed that texture 
features extracted from CT or MRI images could reflect 
the difference between low- and high-grade urothelial 

carcinoma. A radiomics approach has the potential to act 
as a noninvasive tool to assist in preoperative grading of 
urothelial cancer. But the sample size of these studies is 
small, and as UTUC is quite rare compared to bladder 
cancer, only our group and Mammen et al. have included 
UTUC [14, 15]. More data should be gathered to further 
evaluate the ability of radiomics for predicting pathologi-
cal grade, especially in UTUC.

Evaluation of clinical T stage

Accurate local staging of bladder cancer is key to realize 
optimal management of an individual patient. Patients with 
nonmuscle-invasive bladder cancer (NMIBC, stage ≤ T1) 
are mostly treated with bladder-sparing methods such as 
transurethral resection of a bladder tumor (TURBT) and 
intravesical therapies, whereas patients with muscle-inva-
sive bladder cancer (MIBC, stage ≥ T2) are treated with 
cystectomy, radiation therapy or chemotherapy and usu-
ally have a poor prognosis [13, 18]. Thus, discrimination 
between NMIBC and MIBC has great value in guiding 
therapeutic choices. In a study by Garapati et al., mor-
phological and texture features were extracted from CT 
images of 84 bladder cancer lesions and a linear discri-
minant analysis, a neural network, a SVM and a random 
forest classifier were used to combine the features to 
stratify the stage of bladder cancer into two groups: ≥ T2 
and < T2 groups [19]. The classification accuracies of 
the four classifiers were similar with AUCs around 0.9. 
Several MRI-based radiomics studies have also reported 
promising results of accurate stratification for stages of 
bladder cancer. Xu et al. extracted a total of 1104 radi-
omic features from T2W and DW images of 44 patients 
with bladder cancer and selected 19 features to build an 
optimal discriminative model by the method of SVM-RFE 
and synthetic minority oversampling technique (SMOTE) 
to differentiate between NMIBC and MIBC or stage ≥ T2 
and < T2 [20]. An AUC of 0.9857 was reached by the 
SVM-RFE + SMOTE classifier, which outperformed the 
diagnostic accuracy by experts. In a study by Tong et al., 
T2W images of 65 patients with bladder cancer were used 
to quantify intensity and texture parameters to classify 
patients into ≥ T2 or < T2 [21]. Nine optimal features were 
selected from a total of 15,834 features and demonstrated 
an AUC of 0.813 for the differentiation purpose. Lim et al. 
performed a slightly different study from the previous 
ones [22]. They evaluated whether T2W and ADC texture 
features of bladder cancer and extravesical fat as well in 
36 patients could be used to predict MIBC (≥ T2) and 
extravesical disease (≥ T3) after TURBT. Results show 
that greater entropy of bladder cancers and extravesical 
fat was found in category ≥ T3 than in category ≤ T2 and 
in category ≥ T2 than in category T1 tumors with AUCs in 
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the range of 0.74–0.85. These studies indicated that radi-
omics could help with local staging of bladder cancer and 
has the potential to improve current patient management. 
The main limitation of this study is the very small sample 
size, and none of the above studies has a patient popula-
tion over 100. It is no doubt that these preliminary studies 
proved the concept of applying radiomics to evaluate the 
local stage of bladder cancer, but where the study results 
are still valid or radiomics could really promote precise 
local staging of bladder cancer needs further investigation 
and validation in larger cohorts.

Prediction of lymph node (LN) metastasis

LN metastasis in patients with bladder cancer indicates a 
poorer prognosis; thus, the accurate prediction of LN metas-
tasis in patients with bladder cancer assists in treatment 
decision making. Routine CT and MRI identify positive LN 
metastasis according to the size of LN, but the efficacy is 
quite low with a sensitivity of 31–45%, which indicates a 
certain proportion of patients being understaged [23–25]. 
A study by Wu et al. in 118 patients with bladder cancer 
found 150 radiomic features in each patient’s arterial-phase 
CT images, among which nine LN status-related features 
were used to build the radiomic signature for LN metas-
tasis and achieved favorable prediction efficacy [26]. The 
radiomics nomogram incorporating the radiomics signature 
and CT-reported LN status also demonstrated good calibra-
tion and discrimination in the training set (AUC 0.9262) and 
the validation set (AUC 0.8986). The same research group 
conducted another study in 103 patients with bladder cancer 
in the purpose of developing and validating an MRI-based 
radiomics signature for the individual preoperative predic-
tion of LN metastasis [25]. A total of 718 radiomic features 
were extracted from T2W images, and nine features were 
selected to construct the radiomic signature which showed a 
favorable outcome in the training set with an AUC of 0.9005 
and in the validation set with an AUC of 0.8447. The radi-
omics signature and the MRI-reported LN status constituted 
the nomogram, and it demonstrated good calibration and 
discrimination in the training (AUC 0.9118) and validation 
(AUC 0.8902) sets. These two studies proved the promising 
value of radiomics in the prediction of LN metastasis in 
bladder cancer. Despite the relatively satisfactory perfor-
mance of CT- and MRI-based radiomics, a shared limitation 
of the two studies is that they lack external validation. Mul-
ticenter validation with larger cohorts is required to confirm 
the ability of radiomics to accurately predict LN metastasis. 
Genetic markers have been shown to be predictive of LN 
metastasis, the addition of genetic markers to the nomogram 
might further improve the accuracy of radiomics to predict 
LN metastasis and further studies may work on this issue.

Prediction of recurrence risk

A prominent characteristic of bladder cancer is its high 
recurrent rate, which could reach up to 61% for patients 
with nonmuscle-invasive bladder cancer in the first 2 years 
(TFTY) after TURBT [27]. Preoperative prediction of recur-
rence risk is critical for prognostication and individualized 
follow-up regimens for patients. Xu et al. developed and 
validated a nomogram combining MRI-based radiomics and 
clinical predictors for predicting the TFTY recurrence risk 
[28]. Of the 1872 features extracted from T2W, DW, ADC 
and dynamic contrast-enhanced images, the 32 features with 
the highest AUC were selected for calculating Rad-Score. 
The nomogram developed by Rad-Score and clinical predic-
tor of muscle-invasive status produced a good performance 
in the training (accuracy 88%, AUC 0.915) and validation 
cohorts (accuracy 80.95%, AUC 0.838). This preliminary 
study demonstrates the ability of radiomics together with 
clinical factors to address the important clinical issue of 
recurrence risk prediction for bladder cancer. So far, we have 
not found any study investigating the potential of CT-based 
radiomics for prediction of recurrence risk for bladder can-
cer. As CT plays an important role in preoperative evaluation 
and postoperative follow-up in patients with bladder cancer, 
it is worth exploring the value of CT-based radiomics in this 
clinical issue as well.

Treatment response assessment

Neoadjuvant chemotherapy before cystectomy has been 
shown to improve survival but only 30% of the patients 
have complete treatment response; a reliable prediction of 
the efficacy of neoadjuvant chemotherapy is beneficial for 
patients with bladder cancer [29]. In a study by Cha et al., 
they explored the feasibility of three CT-based radiomics 
models employing different design principles to distinguish 
between patients with and without complete chemotherapy 
responses [30]. The three models included a model using 
deep-learning convolution neural network (DL-CNN), a 
model using radiomic features extracted from segmented 
lesions and a model using radiomic features extracted from 
pre- and post-treatment paired regions of interest. All the 
three models produced comparable AUCs compared to two 
expert radiologists ranging from 0.69 to 0.77. It is obvious 
that the accuracy is not satisfactory in terms of AUCs but 
this study is the first to indicate the potential of using DL-
CNN and radiomics methods to assess treatment response 
of chemotherapy for patients with bladder cancer. The 
small sample size of this study (82 patients in the training 
set and 42 patients in the test set) could be a major factor 
that impacted the performance of prediction models. More 
radiomics studies with larger cohorts targeting the prediction 
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of treatment responses for urothelial cancer should be con-
ducted in the future.

Challenges and implications for radiologists

The above studies provide improved insight into the utility 
of radiomics in the management of urothelial cancer. These 
studies demonstrate the capability of radiomics to assist 
more precise characterization and stratification of patients 
with urothelial cancer. As it is impossible to biopsy each and 
every lesion, radiomics offers a noninvasive and economic 
approach to reveal the tumor heterogeneity in different indi-
viduals, different lesions and even within the same lesion. 
By using radiomics as biomarkers, we may begin to appreci-
ate the complexity of tumor biology and tailor treatment for 
each patient with urothelial cancer.

There is no doubt that radiomics could facilitate the 
process of clinical decision making, but up to now, radi-
omics for urothelial cancer remains in research and not in 
clinical use. There are quite a lot of challenges ahead of us 
for applying radiomics in daily practice to improve patient 
care. The workflow of radiomics includes data selection, 
medical imaging, feature extraction, exploratory analysis 
and modeling and implementation of radiomics is rather a 
complicated process. One of the major challenges lies in the 
optimal collection and integration of multiple data sources 
that can produce accurate and robust predictions. Currently, 
the field of radiomics lacks standardized evaluation criteria 
and reporting guidelines; the clinical utility of those pub-
lished prediction models still needs to be further evaluated 
for their performance [31]. To promote the development 
and acceptance of radiomics, Lambin et al. have proposed 
the radiomics quality score (RQS) to evaluate the quality of 
radiomic studies [11]. The RQS evaluates each necessary 
step in a radiomic analysis, both rewards and penalizes the 
methodology and analyses of a study. Investigators should 
be encouraged to follow the rigorous evaluation criteria and 
reporting guidelines to avoid overly optimistic claims about 
robustness and generalizability.

High reproducibility and replicability are essential for the 
widespread acceptance of radiomics-based models or deci-
sion support systems in clinical practice. As radiomics stud-
ies comprise multiple steps, and each could be affected by a 
wide range of factors, details of these subprocesses should 
be disclosed by researchers; otherwise, reproducibility and 
replicability in radiomics would not be possible. Large-scale 
data sharing is imperative for the validation and generali-
zation of radiomics; thus, disclosure of imaging protocols, 
analyzed scans, segmentations, details of feature extraction 
and modeling methodology should be provided as supple-
mentary material in future publications.

Future directions

Medical imaging is evolving from being a diagnostic tool 
to becoming a vital part in the era of personalized medi-
cine. It is of great importance to promoting precision med-
icine, especially in countries like China which has a large 
population but limited government investment in health 
care and low average expense per patient need. Applica-
tion and generalization of novel techniques could help to 
provide the optimal treatment for patients while avoiding 
unnecessary cost, relieving the heavy economic burden of 
diseases for both individuals and society. Radiomics, with 
the advantages of being noninvasive and economical, is 
worthy of further investigation and application.

With the advances in radiomics, it has made it possible 
to correlate clinically feasible quantitative imaging with 
tissue pathophysiology. Radiogenomics highlighting the 
link between radiomic features and gene expression pat-
terns allows the acceleration of their incorporation into 
personalized medicine approaches [32]. Over the years, 
there have been many studies investigating the application 
of gene expression signatures for prediction of tumor char-
acteristics and outcomes of urothelial cancer, including 
stage, risk of recurrences, the progression of nonmuscle-
invasive and muscle-invasive bladder cancer and survival 
[9, 31, 33–37]. But up to now, studies focusing on identi-
fying the association between specific imaging traits and 
gene profile of urothelial cancer have not been reported 
yet. The research in radiogenomics of urothelial cancer is 
still at the initial stage and remains to be further explored. 
Standardized gene assay and radiomics workflow would 
enable radiogenomics biomarkers to meaningfully improve 
diagnosis, prognosis and prediction of response to treat-
ment of urothelial cancer.

The past few years have been an exciting time for the 
field of urothelial cancer. With the introduction of ICIs 
such as atezolizumab and pembrolizumab, significant 
advances have been made in the treatment for urothelial 
cancer. ICIs have been proved to be effective with safe and 
tolerable side effects in a subset of patients with urothe-
lial cancer, but the majority have primary disease pro-
gression [38, 39]. It is crucial to identify patients who 
are most likely to benefit from ICIs. Certain pathological 
markers assessed by immunohistochemistry have shown 
the potential to predict the treatment response of ICIs 
[40]. Noninvasive imaging biomarkers for optimal patient 
selection are still under investigation. Promising results 
have been reported recently that the radiomic signature 
of tumor-infiltrating CD8 cells could be useful in infer-
ring clinical outcomes for patients with cancer treated with 
immunotherapy. But only eight patients with urothelial 
cancer were included in the study [41]. The full potential 
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of radiomics as a biomarker for immunotherapy in patients 
with urothelial cancer should be investigated and validated 
in a larger cohort and ideally in prospective randomized 
trials.

Conclusions

Urothelial cancer is among the most prevalent cancers 
worldwide and, as one of the most heterogeneous cancers 
known, needs a personalized approach for diagnosis and 
treatment. The development of radiomics to obtain quanti-
tative features from imaging traits has shown the potential to 
aid diagnosis, guide therapy and monitor treatment response 
of urothelial cancer. To an extent, the applicability of radi-
omics in clinical practice depends on standardized data col-
lection, evaluation criteria and reporting guidelines, and 
large-scale data sharing is fundamental for the full potential 
that radiomics represents. The research in radiogenomics of 
urothelial cancer and radiomics as a biomarker for immu-
notherapy has just started and needs further investigation. It 
is promising that radiomics-based decision support system 
for precision diagnosis and treatment for urothelial cancer 
will improve the quality of patient care in the near future.
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intRoDuction
Recent articles in the medical and lay press have under-
scored the tremendous progress made in “artificial intel-
ligence”, and raised the prospect that computers, using 
machine learning (ML) algorithms, will soon replace radiol-
ogists.1,2 As recently as 2016, Geoffrey Hinton - founder of 
the branch of machine learning known as “deep learning”–
was quite emphatic in stating this perspective, recently 
stating, “I think that if you work as a radiologist you are 
like Wile E. Coyote in the cartoon. You’re already over the 
edge of the cliff, but you haven’t yet looked down. There’s no 
ground underneath. It’s just completely obvious that in five 
years deep learning is going to do better than radiologists. It 
might be ten years”.2 At that time, Hinton clearly indicated 
that machine learning would be a disruptive technology for 
radiologists. As described in Christiansen’s seminal work,3 
there are three essential characteristics of a disruptive 
technology, each of which is satisfied or could potentially 
be satisfied by machine learning [Table 1]. Since machine 
learning appears to fulfill these three essential characteris-
tics, one could conclude that machine learning represents 
a disruptive technology. However, more recent work by 

Christiansen et al suggests that there are two other criteria 
defining a disruptive technology.4 These include: (1) the 
presence of only a low-end foothold or a new market foot-
hold in the industry; and (2) the unknowing or deliberate 
ignorance of the new technology by the incumbent leaders 
in the industry. As indicated later in this article, we believe 
that neither of these latter two criteria is met by machine 
learning in radiology. With respect to machine learning, 
it now appears that leading radiology organizations have 
begun to adopt strategies for handling this potentially 
disruptive technology.5

In 2016, Chockley (a medical student) and Emanuel (an 
internal medicine physician and “Obamacare” architect) 
identified three threats to the future practice of diagnostic 
imaging, with machine learning singled out as the “ulti-
mate threat”.6 They made the following two assertions: 
(1) “machine learning will become a powerful force in 
radiology in the next 5 to 10 years, not in multiple decades”; 
and (2) “indeed, in a few years there may [be] no specialty 
called radiology”.6 If they meant that the computer will 
largely replace the radiologist in 5 to 10 years (as implied in 
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ABStRAct

There have been tremendous advances in artificial intelligence (AI) and machine learning (ML) within the past decade, 
especially in the application of deep learning to various challenges. These include advanced competitive games (such 
as Chess and Go), self-driving cars, speech recognition, and intelligent personal assistants. Rapid advances in computer 
vision for recognition of objects in pictures have led some individuals, including computer science experts and health 
care system experts in machine learning, to make predictions that ML algorithms will soon lead to the replacement of 
the radiologist. However, there are complex technological, regulatory, and medicolegal obstacles facing the implemen-
tation of machine learning in radiology that will definitely preclude replacement of the radiologist by these algorithms 
within the next two decades and beyond. While not a comprehensive review of machine learning, this article is intended 
to highlight specific features of machine learning which face significant technological and health care systems chal-
lenges. Rather than replacing radiologists, machine learning will provide quantitative tools that will increase the value 
of diagnostic imaging as a biomarker, increase image quality with decreased acquisition times, and improve workflow, 
communication, and patient safety. In the foreseeable future, we predict that today's generation of radiologists will 
be replaced not by ML algorithms, but by a new breed of data science-savvy radiologists who have embraced and 
harnessed the incredible potential that machine learning has to advance our ability to care for our patients. In this way, 
radiology will remain a viable medical specialty for years to come.
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their work), then we completely disagree and believe that this is 
an ill-informed prediction borne out of a lack of domain knowl-
edge of radiology. Their view reflects a fundamental misunder-
standing of the nature of the work performed by radiologists, as 
well as a lack of appreciation of exactly how difficult it will be for 
machine learning to replace the wide variety of imaging interpre-
tation and patient care tasks inherent in the practice of radiology. 
We note that the specter of a future in which radiologists are no 
longer needed to provide image interpretation services has seri-
ously alarmed forward-thinking medical students, radiology 
residents, and fellows, impelling some to ask if they should quit 
or avoid radiology residency because of the risk of not getting a 
job after residency.7,8 Indeed, that fear could potentially damage 
the radiology profession by discouraging talented medical 
students from choosing radiology as their future career. We seek 
to allay such fear by careful examination of the recent develop-
ments in machine learning, and by detailed evaluation of the 
kind of technological development necessary to render the broad 
range of radiological diagnosis. Specifically, there are two funda-
mental sources of misunderstanding that lead many individuals 
to conclude that radiologists can be easily replaced by machine 
learning.

Misunderstanding #1: Machine learning can easily absorb and 
process the wide variation of information and ambiguity inherent 
in interpretation of medical images.

Remarkable achievements have been made in machine learning 
such as the impressive computer vision performance on iden-
tification of objects in everyday pictures from the Stanford 
ImageNet challenge9 and the victory of Google’s AlphaGo over 
the 2016 human champion of Go.10 Computer scientists cite these 
accomplishments to assert that unsupervised machine learning 
will soon be rendering medical imaging findings and diagnoses. 
However, board games such as “Go” focus on a very “narrow” 
artificial intelligence task where a winning vs losing status can be 
assessed, whereas medical imaging is associated with far greater 

amount of ambiguity, and a larger variety of features, classifica-
tions, and outputs. It is also likely that thousands of “narrow” 
algorithms based on separate large, well-annotated databases will 
be required for a computer to begin to compete with a radiol-
ogist for comprehensive diagnostic assessment of even a single 
modality covering a single anatomical region of the body.

Advances in self-reinforcement learning have led to substan-
tial further improvements in “AlphaGo” resulting in “Alpha-
GoZero” which utilizes an approach in which the computer is 
provided with the basic rules of the game and learns by playing 
itself large numbers of games rather than learning by analyzing 
the play of human experts.11 Although possible in games with 
simple defined rules such as Go or chess, analogous self-rein-
forcement learning is not so easily attainable in radiology, given 
the lack of a simple set of rules of the “radiology game” to allow 
this sort of self-play. Barring an unforeseen major technological 
breakthrough, it is likely that human annotation and guidance 
will likely be necessary at multiple stages in the development of 
machine learning in medical imaging, augmented by increases 
in computing power and conceptual advances in artificial intelli-
gence. This pattern is exemplified by the technological develop-
ment of the Google Translate app in which significant conceptual 
advances in ML-based language translation needed to be made 
by computer scientists, who then were able to render the sequen-
tial and contextual information inherent in languages far more 
amenable to deep neural networks.1

Misunderstanding #2: Computer-aided detection and comput-
er-aided diagnosis is an immediate technological precursor to 
ML algorithms.

Chockley and Emanuel cite the current performance of comput-
er-aided detection (CADe) and computer-aided diagnosis 
(CADx) in various areas of radiology - including the field of 
mammography—as evidence of success stories, with machine 
learning “working as well as or better than the experienced 
radiologist”. Indeed, many papers and presentations describing 
CAD systems in mammography have claimed a performance 
level in lesion detection similar to that of an experienced radiolo-
gist.12–14 Based on that research, CAD was approved by the Food 
and Drug Administration (FDA) for use with mammography and 
has been widely introduced into radiology practices across the 
U.S. as an adjunctive technology for mammography.15 However, 
in spite of its widespread use for the past decade, it has not been 
shown to improve detection rates in academic settings, and it is 
unclear whether or not CAD improves the detection rate of inva-
sive breast carcinoma in community practice.16 In addition, the 
use of CAD can be detrimental if its limitations are not under-
stood.17 While review of mammographic images with adjunctive 
CAD would likely be considered the de facto standard of care 
in community mammography practice,18 we note that CAD 
systems have not replaced the practicing radiologist. In practice, 
survey data suggests that more than half (~62%) of radiologists 
have never or rarely changed their report as a result of CAD find-
ings in mammography, and about a third of radiologists never or 
rarely use the findings generated by CAD.19 There has been an 
initial demonstration of a machine learning tool to help separate 

Table 1. Three fundamental characteristics of a disruptive 
technology (as related to machine learning)

Key characteristics of 
disruptive technology

Is this true of machine 
learning and why?

The overall performance level 
offered by early versions of the 
disruptive technology is far inferior 
to the current technology.

Partially true. As of 2018, there is no 
version of an ML algorithm whose 
performance can match the accuracy 
and breadth of a human radiologist.

The customers currently served 
by the incumbent industry leaders 
often provide little (or even 
negative) feedback about the value 
of the new technology.

True. No one in the current 
generation of clinicians is requesting 
that radiology interpretations be 
provided solely by ML systems.

The customers who benefit 
most from the emergence of a 
new technology with inferior 
performance characteristics are 
often different from the ones 
currently served by the market 
leaders.

Probably true. Initial customers 
for ML systems have not yet been 
identified, although they may 
include clinicians (or hospitals) from 
developing nations, research subjects 
from population health studies, or 
large corporations with preventive 
health imaging needs.

ML, machine learning;
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high-risk breast lesions that are more likely to become cancerous 
from those that are at lower risk.20 However, we know of no CAD 
program in clinical use that continually receives feedback about 
its diagnostic performance – a task that is essential to learning 
from experience. Finally, we are not aware of any mammog-
raphy CAD/machine learning software program that formally 
compares a prior mammogram to a current mammogram, just 
as a human reader would do. Yet, comparison with prior imaging 
studies remains a fundamental diagnostic task in mammography 
and radiology, especially in assessment of interval change.

What is machine learning?
The term “machine learning” encompasses a variety of advanced 
iterative statistical methods used to discover patterns in data and, 
although inherently non-linear, is based heavily on linear algebra 
data structures. It can be utilized to help to improve prediction 
performance, dynamically adjusting the output model when the 
data change over time. Historically, there have been two very 
broad groupings of artificial intelligence applied to cognitive 
problems in everyday human work issues. The first is expert 
systems, in which software programs are constructed to mimic 
human performance, based upon rules that were derived from 
“experts” by the programmer. An example of this was the medical 
diagnostic program “Internist I”, which was designed to capture 
the expertise of the chairman of internal medicine at the Univer-
sity of Pittsburgh School of Medicine, Dr Jack Myers.21 The 
second is machine learning, in which the most recent advances 
in computer vision and speech recognition have come from a 
form of machine learning known as “deep learning”, which uses a 
technique known as convolutional neural networks, and is based 
on a set of algorithms that attempt to model high-level abstrac-
tions in data. Neural networks use a variety of approaches loosely 
based on what are referred to as interconnected cells, analogous 
to the interneurons of the human nervous system.

Convolutional neural networks (CNNs) are a special type of 
neural network that is optimized for image pattern recognition.22 
Unlike other types of artificial neural networks, the majority of 
nodes (neurons) in a CNN are only connected to a subset of other 
nodes, particularly those in closer proximity in an image which 
enhances their ability to recognize local features of an image. In 
brief, a CNN consists of multiple layers between the input and 
output layers (Figure 1) The main building blocks are the convo-
lution layer which can be thought of as a series of adjustable 
image filters that can emphasize or de-emphasize certain aspects 
of an image such as borders, colors, noise, and texture. Each of 
the multiple convolution layers within a CNN is followed by a 
pooling layer which serves to reduce the number of parameters. 
For example, the commonly used technique referred to as “max 
pooling” simply chooses the maximum pixel value within each 
small portion of an image and assigns all pixels to that value. 
The final layer of a CNN is a fully connected one similar to other 
types of artificial neural networks.

The term “artificial intelligence (AI)” is currently commonly 
utilized in medical imaging in both the lay and scientific liter-
ature to refer to machine learning in general and CNNs specif-
ically. Although the architecture of both CAD programs and 

ML-based algorithms are designed by humans, the essential 
discriminatory functions of the AI algorithms emerge directly 
from the data, and, unlike CAD, do not require humans to 
identify and compute the critical features.23 This emergence of 
algorithms from the data is what prompted Wired magazine to 
suggest that machine learning may represent “the end of code”.24 
Specifically, the algorithms to predict such things as the pres-
ence of an intracranial bleed, or malignancy in a prostate MRI 
study will emerge directly from the “learned”, iteratively adjusted 
values of the nodes in a CNN. Those values themselves represent 
the trained model and the “training” continues with the intro-
duction of each annotated dataset. Although inputs to CNNs are 
not always raw images (and may be segmented and co-registered 
prior to classification), the many steps such as feature extraction, 
segmentation, registration, and statistical analysis utilized by the 
previous generation of so-called CAD (computer-aided detec-
tion or computer-aided diagnosis) software are not required. 
Both AI and CAD techniques can be utilized to develop medical 
imaging software, but AI algorithms typically require much more 
annotated data but subsequently take much less time to develop 
using fewer steps. Most developers previously utilizing these 
more human, understandable basic steps have made the transi-
tion to the use of CNNs. Creation of a machine learning model 
can be performed much faster (e.g. 5 to 6 days rather than 5 to 6 
months or years) than traditional computer-aided detection and 
diagnosis (CADe/CADx).

The nature of learning in machine learning can be confused 
with that associated with humans. Machine learning has been 
defined as “algorithm-driven learning by computers such that 
the machine’s performance improves with greater experience” 
and indicated that it “involves the construction of algorithms 
that learn from data and make predictions on the basis of those 
data.”6 Although this definition may imply a type of self-rein-
forcement learning “with greater experience”, in actuality, these 
algorithms in diagnostic imaging have improved largely by the 
addition of annotated data based on human review or patient 

Figure 1. A portion of the input (image) is passed to each suc-
cessive pair of convolutional/pooling layers (filter/parameter 
reducers) with several convolution and pooling layers added 
before an output (prediction) is made. Initial layers tend to 
represent general features such as edges and colors and later 
layers represent features of increasing complexity, such as 
corners, and then textures, followed by even complex fea-
tures such as a snout or whiskers, and finally entire objects 
such as a dog or cat. Finally, there is a “fully connected layer” 
that flattens input from other layers transforming them into 
a decision on whether the output belongs to a certain class 
(e.g.dog vs cat). Errors in classification in a training set are 
then “back-propagated” to modify and/or update the filters 
so that overall errors are minimized.
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outcome information, rather than repetitive application of 
work-in-progress. This is a fundamental difference from the 
use of machine learning in strategy games such as Chess and 
Go in which there are well-defined parameters of success. The 
current regulatory constraint on progressive learning of these 
algorithms is that clearance of these products has been based on 
a well-defined training set and a test set (in order to establish 
performance against ground truth). Therefore, from a regulatory 
perspective, it is unclear whether or not the FDA would allow 
the continued modification or improvement of an ML system 
by incorporation of additional local patient data from a given 
clinical radiology practice. As is true of other related statistical 
techniques such as linear regression, additional “processed” data 
are required to enhance the model rather than simply “learning 
from experience” per se. Therefore, computers remain far less 
efficient than humans at learning and generalizing concepts from 
a relatively small dataset. This has been mitigated somewhat by 
techniques such as transfer learning which takes patterns learned 
from a related task as a starting point effectively kickstarting the 
training (also known as “one-shot learning”) that takes advan-
tage of existing knowledge to train using just a single or very few 
examples.25

Will an ML system soon be capable of replicating 
the work of a radiologist?
Major technological developments in machine learning have 
been made over the last few years, including advances in deep 
learning algorithms, further advances in graphics processing 
units speed and memory, and the exponential growth of corpo-
rate investment. However, there are several independent factors 
which suggest that successful replacement of the radiologist’s 
work is likely to be substantially more difficult than is currently 
envisioned by some non-radiologist health care experts and 
computer science futurists. These potential challenges are 
based upon unique aspects of the radiological image, the visual 
processing capability of the radiologist, and the role of the radiol-
ogist in maximizing and maintaining clinical relevance in image 
interpretation. In particular, the job of the radiologist is not 
simply to detect findings related to various imaging studies, but 
to determine “what is wrong with this picture” and help deter-
mine the future course of action in the diagnostic evaluation and 
therapeutic decision-making. Determining “what is wrong with 
this picture” is a much harder task that extends far beyond the 
capabilities of the current generation of computer vision systems. 
Contextualization of the imaging information in diagnostic eval-
uation and therapeutic decision-making may be an even more 
difficult task to replicate.

A major challenge for ML algorithms is the greater technical 
complexity of the radiological image as compared to those images 
typically used in object-recognition tests for computer “visu-
alization”. In addition to the differing imaging modalities, this 
complexity includes a wide variety of manifestations of normal 
and pathological findings, multiple sequential images in a cross 
sectional/volumetric dataset, with much higher complexity of 
data and raw number of pixels/voxels in medical images. It also 
includes a high level of ambiguity and difficulty in annotation 
that is not inherent in the ImageNet challenges that have used 

common objects such as dogs, cats, bikes, cars, etc. Another 
major technical challenge is the development of a “reasonable” 
detection rate of abnormalities without an excessive rate of 
false-positive findings as compared with human performance. 
For more than 20 years, CADe and CADx programs, such as 
those used to detect lung nodules or breast masses, have been 
fraught with the issue of frequent false-positive findings (i.e. 
low specificity) and we suggest that this problem may also be an 
intrinsic problem for deep learning algorithms.22,26 This problem 
is further complicated by: (1) the multiple classes of imaging 
abnormalities detected on diagnostic imaging studies; (2) the 
time and expense associated with the collection of large anno-
tated datasets (such as ChestX-ray14 and the Cancer Imaging 
Archive) required for deep learning, of which a fair number are 
available in the public domain,27,28 but many more are needed29 
; (3) the difficulties associated with ensuring sufficient, detailed 
image annotation; and (4) the rapid changes in imaging tech-
nology (e.g. 2D to 3D mammography tomosynthesis) that makes 
a multiyear annotation effect obsolete due to major technolog-
ical improvements in imaging modalities. All of these challenges 
must be addressed before machine learning can replicate the 
work of a radiologist.

What are the technical details underlying 
challenges in object recognition and identification 
of abnormalities on diagnostic imaging studies?
First, it is true that computers with deep learning algorithms have 
approached human levels of performance in object recognition 
– as demonstrated in the Stanford ImageNet Large Scale Visual 
Recognition Competition (ILSVRC).9 However, object recogni-
tion is a necessary but not sufficient prerequisite to performing 
this task on medical imaging studies. The set of validation images 
used in the ILSVRC are characterized by lower resolution, fewer 
classes and instances of objects per image, and larger objects, as 
compared to those features on the typical medical image used for 
diagnostic purposes. Stated another way, the task of object recog-
nition on medical images is far more difficult because the objects 
(i.e. imaging findings) are more numerous, more varied, and far 
more complex than those on the standard test images for the 
ILSVRC. The issues of greater resolution, increased frequency of 
objects per unit space, and wider variety of object shapes and 
characteristics on medical images together pose a far greater 
challenge for computer-based object recognition than those 
posed by simple recognition of discrete objects. Medical evalu-
ation of imaging findings typically requires analysis of multiple 
features, requiring several levels of analysis beyond object detec-
tion and classification (extending beyond the classic visual task 
of discriminating “dog vs cat”). Unless this learning algorithm 
can be trained with hundreds or thousands of additional algo-
rithms to distinguish varying features of a recognized object, it 
will not yield any useful information about such questions. In the 
medical imaging realm, many kinds of imaging pathology require 
detailed analysis of a combination of features, likely requiring a 
greater degree of testing and validation, as well as an ensemble of 
multiple narrow algorithms. However, we recognize that focused 
applications of deep learning to specific medical imaging prob-
lems have already been devised and evaluated, especially in the 
fields of cardiothoracic imaging and breast imaging.30,31
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In order for an ML system to replicate fully the multifactorial 
nature of the radiologist’s assessment of an image (for example, a 
chest radiograph), it will likely need to be trained not by a single 
large dataset (containing many disparate types of radiographic 
abnormalities), but by the presentation of multiple datasets that 
specifically reinforce the learning associated with each class of 
imaging abnormalities (such as cardiac, mediastinal, pulmonary, 
and osseous) as well as additional datasets with various important 
subclasses of imaging abnormalities (for example, congenital 
heart disease). The final aggregate of the multiple datasets for 
chest radiographic images will need to be extremely large and 
extensively annotated, in order to ensure that the computer’s 
experience matches both the depth and breadth of the radiolo-
gist’s knowledge. Of course, a less ambitious training approach 
could be devised to ascertain whether a radiograph is normal or 
abnormal for triage purposes, but this approach would not repli-
cate the bandwidth and detailed accuracy of expert performance.

Another major problem is the establishment of a gold standard. 
For example, within a large dataset of chest radiographs in patients 
suspected to have tuberculosis, there may be variability among 
several clinical radiologists in image interpretation. In clinical 
practice, one individual radiologist may want to not miss a case of 
tuberculosis due to its high clinical impact and thus would anno-
tate cases as positive with subtle/non-specific findings of TB, while 
another radiologist may not want to overcall tuberculosis and may 
instead look for the more classical signs specific to the disease. 
Thus, when creating a predictive machine learning model, does one 
attempt to create different radiologist “personas” (e.g. high sensi-
tivity vs high specificity profiles), or predict what a specific radiolo-
gist will report, or somehow create a middle-of-the-road report or 
“consensus” report? Alternatively, does the annotation of the final 
outcome of an imaging study get labeled as the actual sputum lab 
result or the actual clinical outcome? If so, then cases that are obvi-
ously normal or obviously strongly suggestive of TB will be labeled 
differently due to the clinical outcome. (In a recent academic study 
on this topic, the combination of sputum results, original radiol-
ogist interpretations, and confirmation by a single overreading, 
expert radiologist was required for inclusion into the pulmonary 
TB database.)30 Finally, is the task to predict how a specific radiolo-
gist performs or how an “average” radiologist performs in interpre-
tation of a radiograph or in prediction of the clinical outcome? If the 
goal is to predict clinical outcome, then issues such as prevalence of 
disease in a particular population may weight too heavily on the 
performance of the system. All of these questions raise important, 
clinically relevant issues that have not yet been resolved.

In machine learning, the computer’s greatest strength - its abilities 
to process data endlessly and to repeat the same steps without tiring 
– could also represent a type of Achilles’ heel. This problem is due 
to the issue of overfitting- defined as the functioning of a learning 
model (or prediction model) that fits so well with its training dataset 
to the extent that it models the statistical noise, fluctuations, biases, 
and errors inherent in the dataset, negatively impacting the perfor-
mance on new data (i.e. diagnostic imaging studies not previously 
presented). This is more likely to occur in medical imaging than 
in other computer vision applications due to the relatively large 
number of categories of normal and abnormal findings and limited 

numbers of annotated training sets. More succinctly, Domingos 
indicates that overfitting has occurred “when your learner outputs 
a classifier that is 100% accurate on the training data but only 50% 
accurate on test data, when in fact it could have output one that is 
75% accurate on both”.22 While the notion of accuracy in machine 
learning was relatively simple in the reported studies of object 
recognition, we note that radiology has a rich scientific history of 
measurement of diagnostic accuracy, including the development of 
receiver-operating characteristic (ROC) analysis.32–34

Classifier performance is central to making informed deci-
sions about machine learning, and yet the typical use of a single 
measure of diagnostic accuracy, while simple, is inadequate for 
technical evaluation. Publications of medical machine learning 
studies are much more informative and rigorous when they 
utilize ROC analysis because its measures of sensitivity and 
specificity are not dependent on prevalence of disease (as is 
true of accuracy). In addition, the measure of diagnostic accu-
racy is typically derived from use of a single arbitrary threshold, 
whereas ROC analysis demonstrates the performance using all 
known threshold values. However, since the prevalence of a 
disease does affect the performance of any diagnostic classifier, it 
would also be helpful to know the prevalence of the disease in the 
test population, so that the false-positive and false-negative rates 
could be determined. Precision, which roughly translates as the 
likelihood that a positive test means that the disease or finding is 
truly present (otherwise known as the positive predictive value), 
can demonstrate the relative strength or weakness in a classifier 
for findings or diseases that are low prevalence.26,35

The problem of overfitting in medical imaging is also magnified 
by the wide variety of “odd” shapes of normal structures, and 
the myriads of anatomical variants related to extra or missing 
anatomical structures (such as accessory ossicles or congeni-
tally absent or hypoplastic structures). This problem is made 
most evident by considering the problems faced by a radiology 
researcher who is collecting and classifying the many types of 
anatomical structures and abnormalities that are found on chest 
radiography. That researcher would have to obtain images and 
related data for the computer to demonstrate abnormalities of 
the heart, mediastinum, lungs, bones, pleura, and various other 
structures. Distinguishing anatomical variants from pathological 
entities has been an important function of the practicing radiol-
ogist, with a whole atlas devoted to helping them avoid making 
a false-positive diagnosis.36 In other scientific fields, such as the 
field of genomics, there has been recognition of the unacceptably 
high “false-positive” rate associated with various kinds of “wild-
type” variations that mimic findings associated with genetic 
mutations associated with cancer.37 In one study of ML algo-
rithms devoted to this problem, they characterized the types of 
false-positive errors into six different groups and suggested that 
“feature-based analysis of 'negative’ or wild-type positions can be 
helpful to guide future developments in software”.37 This is akin 
to the problem with anatomical variants in diagnostic radiology.

Because the deep learning approach is highly complex, and 
because no method has been developed that allows a given algo-
rithm to “explain” its reasoning, technology experts are generally 
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not able to understand fully the reasons for the algorithm’s 
conclusions, and not able to predict the occurrence and frequency 
of failure or error in performance of the algorithm.38 Therefore, 
validation and regulatory approval could take more time due to 
the “black box” nature of machine learning approaches. Fortu-
nately, major advances have been made in recent years in illumi-
nating the contents of the CNN black box.39 One such advance, 
saliency maps, was originally proposed in 1998, and is based on 
the “feature-integration theory” of human visual attention.40 In 
2013, two image visualization techniques for visualization inside 
deep convolutional networks were demonstrated, one of which 
involved saliency maps.41 For a given output category value (e.g. a 
type of interstitial lung disease), saliency maps display the pixels 
of the image (e.g. CT of the thorax) that were most important 
for image classification. More recently, other more sophisticated 
techniques have been developed that organize non-human inter-
pretable convolution layers into an explanatory and potentially 
interactive graph or image that can be used to speed up the 
learning process and identify inaccuracies or important areas of 
an image ignored by a CNN allowing refinement of the model 
and improving performance.39,42

In contrast, CAD algorithms have been developed over several 
decades, many of which are focused on specific clinical imaging 
problems, and therefore have relatively narrow imaging applica-
tions. Examples of these applications include: (1) fracture detection, 
bone age determination, and bone mineral density quantitation in 
orthopedic radiology; (2) brain hemorrhage detection, multiple 
sclerosis detection and quantitation, and regional brain segmen-
tation and volumetry in neuroradiology; and (3) coronary and/or 
carotid artery stenosis evaluation, and cardiac function assessment 
in cardiovascular radiology. In order for an ML system to repli-
cate the performance of a radiologist, it would have to incorporate 
large portfolios of narrow ML algorithms, each of which has been 
devised to answer a specific clinical question. The use of combi-
nations of algorithms to solve a single narrow machine learning 
problem or problems has been referred to as ensemble methods 
in machine learning and has been successful in winning machine 
learning competitions on classification of complex datasets. Yet 
the integration and orchestration of such a wide and varied array 
of learning algorithms - possibly from several different devel-
opers–into a single clinical system would likely require substantial 
amounts of time and effort in validation and testing (according 
to the “no free lunch” theorem of ensemble learning),43 not to 
mention the potential regulatory challenges. In the field of arti-
ficial intelligence, the “holy grail” is to devise a form of “general 
artificial intelligence”, which could replicate average human intelli-
gence. General artificial intelligence, as opposed to a collection of 
narrow artificial intelligences, could help overcome this techno-
logical hurdle. Unfortunately, the majority of computer scientists 
do not believe that generalized artificial intelligence will emerge 
in the next 20 years, if ever. However, there are other ways that 
narrow artificial intelligence can help to improve the radiology 
work process, aside from diagnostic interpretation. There is a wide 
range of opportunities to increase operational efficiency, improve 
the radiology workflow, and provide decision support to clinicians 
and radiologists.

Is it likely that the job of the practicing radiologist 
is going to be completely displaced by artificial 
intelligence in the near future?
Acemoglu and Autor devised a 3 × 2 × 2 matrix model by which 
“work” can be classified, according to whether it is based upon 
(1) low, medium, or high skills; (2) cognitive or manual labor; 
and (3) routine or non-routine tasks.44 Based upon their anal-
ysis, they found two interesting results relevant to a radiologist. 
First, the rapid diffusion of new technologies which substi-
tute capital for labor – such as computerization - resulted in 
decreased demand for work based upon routine tasks. This effect 
was present whether the work is cognitive or manual, but was 
predominantly found among workers with medium-skill levels. 
Interestingly, the types of workers found to be more resistant to job 
displacement included financial analysts (a non-routine, cogni-
tive job) and hairdressers (a non-routine, manual job). (We do 
note that the asset management industry is devoting substantial 
economic resources – even more than that devoted to radiology 
- to incorporate artificial intelligence into financial analysis.45) 
With respect to routine interpretation tasks performed by the 
practicing radiologist, it is likely that an ML system will soon 
perform some of the routine image interpretation tasks (for 
example, lung nodule screening or pre-operative chest radiog-
raphy). However, many of radiologists’ highly skilled work tasks, 
especially in complex image pattern recognition, will be more 
difficult to replicate over at least the next two decades, and there-
fore will require more time for adequate dataset generation and 
training, validation, and performance testing. This suggests that 
those radiologists who have acquired higher levels of skills (such 
as higher degrees of subspecialization, or greater experience in 
narrow, focused areas of clinical imaging) would be even more 
resistant to job displacement. Second, “technical change that 
makes highly skilled workers uniformly more productive” results 
in a lowering of the threshold for task difficulty that separates 
the medium-skill worker and the high-skill worker.44 Therefore, 
in the face of potential displacement of radiologists from some 
image interpretation tasks, many radiologists will increasingly 
spend a higher percentage of time on other valuable radiolo-
gy-based tasks. These radiology-based tasks include those listed 
in the ACR 3.0 Initiative, such as: consultation with referring 
physicians; timely oversight of ongoing complex imaging studies; 
direct patient contact including discussion about test results; veri-
fication of adherence to national imaging guidelines for proper 
test ordering; participation and data collection for radiology 
quality initiatives; and timely review of radiology-based patient 
outcomes.46 The potential shift in the proportion of imaging 
interpretation activities in the daily work of the radiologist is also 
in keeping with the findings of the 2017 McKinsey report on the 
effects of automation on employment and productivity. While 
over half of all occupations have at least 30% work activities that 
could be automated, no more than 5% of all occupations could be 
entirely automated; this indicates that far more jobs will change 
than will be eliminated by automation.47 In particular, the report 
states “high-skill workers who work closely with technology will 
likely be in strong demand, and may be able to take advantage of 
new opportunities for independent work.” For radiologists, this 
could potentially include renewed focus on the entire spectrum 
of patient care in imaging. It is likely that new kinds of jobs for 
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radiologists will arise as a result of machine learning, similar to 
the way online retail activities led to both a decreased need for 
marketers and sales staff, and a tremendously increased demand 
for data scientists able to perform the data-mining activities 
needed to assess consumer wants and satisfaction.

For some expert radiologists, particularly those situated along 
the frontiers of their radiological subspecialties, there is also the 
possibility of being involved with a higher proportion of non-rou-
tine clinical work, including the interpretation of more complex 
imaging technologies that are found to be much more difficult 
to encode into an ML system. It is far less likely that sufficiently 
large datasets could be generated to provide neural networks 
the “experience” to answer questions about less common clini-
co-pathological entities, or to deal with non-routine clinical 
issues that often arise in medical practice. Therefore, there will 
remain an important role for the expert radiologist who can deal 
with the non-routine clinical work. This viewpoint is expressed 
by two experts in information systems and economics: “While 
computer reasoning from predefined rules and inferences from 
existing examples can address a large share of cases, human diag-
nosticians will still be valuable even after Dr Watson finishes its 
medical training because of the idiosyncrasies and special cases 
that inevitably arise. Just as it is much harder to create a 100 
percent self-driving car than one that merely drives in normal 
conditions on a highway, creating a machine-based system for 
covering all possible medical cases is radically more difficult than 
building one for the most common situations”.48

Finally, there is significant uncertainty as to whether or not certi-
fication by governmental regulatory agencies would initially 
allow these systems to operate autonomously, as opposed to 
requiring oversight by human radiologists. Similar to the steps 
established for CAD in mammography almost two decades ago, 
we believe that ML systems will, for the foreseeable future, be 
approved only for adjunctive use with radiologist oversight, over 
which time it could become the norm for machines and humans 
to work together in imaging study interpretation. At first, this 
may manifest as “worklist triage” in which cases suspected to be 
more likely to be abnormal by an ML algorithm will be priori-
tized for human interpretation.

Obtaining regulatory (FDA) clearance will continue to be an 
arduous process during the initial introductory phase of ML 
systems into the clinical care environment, because of all the 
intricate details involved in validation and approval of a plethora 
of ML systems. The FDA will likely need greater time, resources, 
and expertise to evaluate a completely different kind of imag-
ing-based technology, and to understand the ramifications of 
a system wherein the underlying work processes–the learning 
algorithms themselves – are relatively opaque (i.e. a “black box”). 
Even after FDA approval, user acceptance of ML systems could 
be adversely affected if systemic errors or deviations are detected 
that cannot be explained. This suggests that post-market surveil-
lance could become a more important feature with these systems.

The FDA’s “Clinical and Patient Decision Support Software 
draft guidance” issued in December 2017 exempts software that 

provides decision support that merely makes it easier to perform 
simple calculations or retrieval of accessible data. However, 
deep learning applications are thought to be “black box” and 
thus must be FDA regulated.49 In response to these challenges, 
the FDA has recently begun to make significant strides toward 
making the clearance process less onerous. One FDA guidance 
draft document, “Expansion of the Abbreviated 510(k) Program: 
Demonstrating Substantial Equivalence through Performance 
Criteria”50 makes 510(k) clearance easier by allowing manufac-
turers to establish “substantial equivalence” functionally using 
performance metrics rather than requiring direct compar-
ison testing and the same technology.51 A few companies have 
managed to obtain FDA clearance for their deep learning-based 
algorithms related to diagnostic imaging and diagnostic testing. 
Arterys (San Francisco, CA) was the first company to receive 
clearance by the FDA for a deep learning application (for a suite 
of oncology software for automated segmentation of solid tumors 
on liver CT and MRI scans, and lung CT scans), thereby setting a 
precedent for other applications using CNNs.52 Also, as of August 
2018, the FDA has recently approved clinical decision support 
software for alerting providers of a potential stroke in patients,53 
an algorithm for detection of wrist fractures,54 and an AI-based 
device to detect certain diabetes-related eye problems.55

What is the likely pathway of incorporating 
machine learning into radiology practice?
Even if the use of machine learning technology throughout 
society continues to increase exponentially, it is not at all clear 
that ML algorithms in a relatively well-defined field such as 
medical imaging will necessarily experience such astronom-
ical growth. Advances in computational speed may only guar-
antee that the same answer–including the wrong answer–could 
be provided 1000 times faster, unless there are new techniques 
or new insights that emerge with approaches to deeper neural 
networks or future approaches such as Bayesian deep learning 
networks. Currently, machine learning for various image recog-
nition algorithms requires presentation of many well-annotated 
imaging studies by human researchers, who then periodically 
test each algorithm for reliability and accuracy. Large imaging 
datasets will need to be developed and shared across institutions 
and radiology practices; this is an activity that requires work 
and trust to overcome technological, institutional, and regula-
tory barriers. The longstanding requirements of the medical field 
for high levels of diagnostic accuracy (as measured by sensi-
tivity and specificity) and precision in differential diagnosis, will 
likely serve both as important benchmarks by which to judge the 
usefulness of these computer-aided diagnostic algorithms, and 
as essential “brakes” to the otherwise headlong rush to intro-
duce labor-saving technology to reduce costs. The incorporation 
of these machine learning programs into the medical arena will 
likely be more gradual than in other sectors such as industrial, 
financial, chemistry, astronomy, etc., with a reasonable likelihood 
of a monotonic increase in the rate of progress over the years. 
Our healthcare system is a complex adaptive system and change 
in portions of that system–such as in the radiology industry–is 
typically characterized by “punctuated equilibrium”–i.e. rela-
tively long periods of incremental change, interrupted by rela-
tively short bursts of intense change.56 Thus, the one caveat that 
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we make to our prediction of gradual incorporation of machine 
learning would be the advent of an earth-shattering techno-
logical innovation in generalized artificial intelligence–such as 
the invention of “the master algorithm,” which is that universal 
learning algorithm that can be applied to disparate fields of 
knowledge, and yet still make robust, accurate predictions, 
when supplied with sufficient, appropriate data.57 Only in that 
case would we suggest that machine learning has become a “10X 
force”–a change in the business force so large that it exceeds the 
usual competitive influences by an order of magnitude.58 This 
“sea-change” would then motivate radiologists to prepare for an 
upcoming “strategic inflection point”–that point in time when 
the old ways of doing business and competing in the marketplace 
are no longer favored, and a new strategic paradigm takes over.58 
However, the history of science indicates that the timing of such 
an invention cannot be predicted in advance and likely will not 
occur any time soon.

In order to support their cognitive processes, current practicing 
radiologists have already learned to incorporate various kinds of 
technology, including quantitative analysis, three-dimensional 
imaging display tools, collaborative tools for consultation, and 
digital imaging resources. Future AI tools hold the promise of 
further expanding the work that radiologists can do, including 
in the realms of precision (personalized) medicine and popula-
tion management. Rather than replacing radiologists, future AI 
tools could advance the kind of work that radiologists perform; 
this would be in line with the classic IBM Pollyanna Principle: 
“Machines should work; humans should think.”59,60 At the 2016 
meeting of the Radiological Society of North America (RSNA), 
Keith Dreyer proposed that the future model of the radiologist 
is the “centaur diagnostician”; such a physician would team up 
with the ML system to optimize patient care.61 This idea follows 
the observation that the performance of human-machine teams 
in playing chess could exceed that of a human or a machine 
system alone.62 This partnership would yield greater precision 
and detail in their imaging-based report, including more quan-
titative information and evidence-based recommendations.61 
In addition, this could help facilitate advanced visualization 
techniques, refine clinical-radiological work procedures, and 
improve the timeliness and quality in communication between 
the radiologist and referring physician, as well as between the 
radiologist and patient. By viewing ML systems as a collabo-
rator, not as a competitor, future radiologists could benefit from 
a partnership where the combined performance of the radiolo-
gist-computer team would likely be superior to either one alone, 
and feel enriched by the “luxury” of working with the advanced 
technological support offered by machine learning. In addition, 
the computer could allow the human to do more of what he or 
she does best – such as judicious use of the cognitive abilities 
associated with curiosity, experimentation, and insight. Just as 
in the example of Advanced Chess, it seems likely that the ability 
to work effectively with the computer will become a distinct 
competitive advantage. The futurist Kevin Kelly suggests that we 
cannot race against the machines, but that we can race with the 
machines. His conclusion is even more succinct: “You’ll be paid 
in the future based on how well you work with robots”.63 This 
whole concept is also being embraced in various industries, as 

well as in medicine, including the explicit re-definition of “AI” by 
the American Medical Association as standing for “augmented 
intelligence” rather than “artificial intelligence”.64

We believe it likely that machine-based learning systems will 
need oversight for a great many years because of the potential 
for many different kinds of errors on various kinds of imaging 
studies. In addition, most current medical imaging algorithms 
are not equipped with the basic knowledge and skills in human 
anatomy, physiology, and pathology. If we do reach a point when 
we might expect that machine-based systems approach the accu-
racy and reliability of a practicing radiologist, then it will become 
a societal issue as to whether or not diagnoses based solely 
upon machine learning are acceptable. If this is viewed solely 
as a technological upgrade, and if society has already accepted 
other innovations such as self-driving cars, then this change may 
not be controversial. On the other hand, if there is significant 
adverse public reaction to the loss of human interaction in the 
realm of medicine, then it is possible that radiologists may not 
be displaced for a very long time, if at all. Along these lines, 
Verghese et al have issued a strong call for the computer and the 
physician to be working together for the foreseeable future and 
have given a warning about the unintended consequences of the 
implementation of new technology.65

Given the expected retirement of increasing numbers of baby-
boomer radiologists over the next two decades and the growing 
emphasis on screening and maintenance of health, it is likely 
that there will be a need for more radiologists over the next 
20 years, and that computers will increasingly be regarded by 
those radiologists as trusted partners. The ML systems will be 
able to help create preliminary reports and note additional find-
ings that may not make it into the final report, but, as is true 
of CAD today, computers would not be primarily responsible 
for the final reports. There will be a requirement for much more 
academic work to be done by human radiologists, including 
knowledge sharing and transfer learning, even before reaching 
the stage where the machine-based learning programs can 
become true partners in the imaging interpretation process.66,67 
Over the last few years, the RSNA R&E Foundation has received 
an increasing number of submissions of research and education 
grant applications (1 in 2015, 3 in 2016, 9 in 2017, and 27 in 
2018) which involve the development of artificial intelligence in 
radiology, including machine learning.68 In addition to educa-
tional offerings at various universities in the US and around the 
world (whether as part of degree-granting programs, certifi-
cate-based programs, or online training), there are also several 
developmental opportunities for physicians (whether intern-
ships or jobs) at various technology-based corporations in the 
US. The involvement of radiologists in machine-based learning 
in radiology will be critical in assuring that the care of future 
patients is not compromised by errors of commission or omis-
sion. While not yet part of the radiology curriculum for trainees, 
it is not hard to imagine that training in radiology informatics is 
likely to become an even more central component of radiology 
residency education. The first step has been taken by organized 
radiology with the development of a specific training program 
in radiology informatics geared towards fourth-year radiology 
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residents that was funded by the Association of University Radiol-
ogists (AUR) and is co-sponsored by RSNA and the Society for 
Imaging Informatics in Medicine (SIIM).69 In the US, curricular 
issues in radiology education are still governed by the American 
Board of Radiology (ABR), but educational initiatives to incor-
porate informatics training for all radiology trainees are likely 
to be in line with future developments in diagnostic imaging. 
Current practicing radiologists will also need to be proactive in 
ensuring that they are full partners in these endeavors, rather 
than serving as “hand-maidens” to the other investigators who 
“just want their images labeled”. For those individuals wishing to 
learn more about machine learning without having to abandon 
busy clinical careers for any length of time, there are several 
recommended online courses offered by various academic insti-
tutions (including Stanford, MIT, and Columbia) and by certain 
corporate entities (including Google and Nvidia) that have 
been available to the public at no charge.70 Academic medical 
centers and other radiology organizations will need to provide 
environments where radiologists, machine learning experts, and 
other computer scientists can interact on a continual basis. As 
Davenport and Dreyer point out: “If the predicted improvements 
in deep learning image analysis are realized, then providers, 
patients, and payers will gravitate toward the radiologists who 
have figured out how to work effectively alongside AI”.71 Along 
those lines, we find that the creation of the ACR Data Science 
Institute is a strong indication that radiology organizations have 
recognized machine learning as a potential disruptive tech-
nology and are getting prepared to respond to this threat by 
investing resources to help develop, adapt, and deploy this new 
technology in the radiology workspace over the coming years.72 
In addition, several radiology-based organizations have started 
collaborations with major technology companies to develop ML 
algorithms and platforms.73–75 We believe that this is just the 
beginning of a major trend in radiology, and that it behooves 
radiologists to participate in such endeavors for the betterment 
of radiology practice and the welfare of the patients that we serve.

concluSion
We agree that machine learning will continue to make major 
advances in radiology over the next 5 to 10 years, but we completely 
disagree that there is any real possibility that radiologists will be 
replaced in that time frame, or even during the careers of our 
current trainees. In spite of all the advances of machine learning 
in the fields of self-driving cars, robotic surgery, and language 
translation, we believe that the work performed by radiologists is 
more complex than is thought by non-radiologists, and therefore 
more difficult to replicate by machine learning. The emergence 
of deep learning algorithms will help radiologists broaden the 
kinds of activities that establish their value in clinical care (such 
as routinely providing quantitative analysis), and to enhance the 
proportion of cognitive work (e.g. formulation of diagnosis) rela-
tive to visual search work (e.g. detection of imaging abnormali-
ties). Imaging modalities will increasingly utilize deep learning 
to reduce image noise and enhance image quality overall. Since 
the potential for disruption of the radiology industry by machine 
learning does remain latent, it would be wise for various radiology 
organizations–especially academic institutions - to participate 
in research and development of this technology, and not leave 
the arena solely to corporate entities in the information tech-
nology sphere. While the economic environment of healthcare 
will continue to bring change to the practice of medicine and 
radiology, we believe that machine learning will not bring about 
the imminent doom of the radiologist. Instead, we foresee an 
intellectually vibrant future in which radiologists will continue to 
thrive professionally and benefit substantially from increasingly 
sophisticated and useful ML systems over the next few decades. 
Therefore, we would certainly encourage medical students and 
others interested in radiology as a profession–especially those 
with expertise in computer science–to pursue, enjoy, and look 
forward to a long career in diagnostic radiology, nuclear medi-
cine, molecular imaging, and/or interventional radiology. This 
would provide benefits not only for the practitioners of diag-
nostic radiology, but even more importantly for our patients and 
for society.
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Abstract
Prostate cancer (PCa) is the second most common type of cancer among males and the fifth major contributor to cancer-
related mortality and morbidity worldwide. Radiomics, as a superior method of mining big data in medical imaging, has 
enormous potential to assess PCa from diagnosis to prognosis to treatment response, empowering clinical medical strategies 
accurately, reliably, and effectively. Hence, this article reviews the basic concepts of radiomics and its current state-of-the-art 
in PCa as well as put forwards the prospects of future directions.
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Introduction

Prostate cancer (PCa) is the second most common type 
of cancer among males and the fifth major contributor to 
cancer-related mortality and morbidity worldwide [1–3]. 
However, accurate identification and effective treatment of 
PCa remain a major public health challenge, largely due to 
its substantial heterogeneity which often leads to imprecise 
diagnosis and suboptimal disease management.

Digital rectal examination (DRE), prostate-specific anti-
gen (PSA) test, and transrectal ultrasound (TRUS)-guided 
prostate biopsy are currently the most widely used diagnos-
tic methods of PCa in clinical practices. However, each of 
these methods has some limitations [4], including differ-
ent suitable conditions, unstable accuracy, sampling error, 
over-diagnosis, etc. The current paradigm for screening and 
diagnosis is imperfect, with relatively low specificity, high 
cost, and high morbidity. Meanwhile, the optimal clinical 
management which may include watchful waiting, active 
surveillance, open, laparoscopic or robotic-assisted radical 
prostatectomy, external beam radiation therapy (EBRT), and 
brachytherapy [5], is highly dependent on accurate diagno-
sis. Early detection of PCa enables radical treatment and 

long-term patient survival. Nevertheless, once the tumor 
infiltrates out of the prostate capsule, the treatment effect 
and prognosis are often poor.

With the rapid development of medical imaging tech-
niques, many imaging modalities have demonstrated great 
value in the screening, diagnosis, treatment response meas-
urement, and prognosis evaluation of PCa. Magnetic reso-
nance imaging (MRI) could provide the advantage of detect-
ing prostate and periprostatic characterization and structures 
with high spatial resolution, superior contrast resolution in 
soft tissue, multiplanar imaging capabilities, and larger field 
of view (FOV) [6, 7]. Multi-parametric magnetic resonance 
imaging (mpMRI) has shown promise to improve detection 
and characterization of PCa considerably with more seminal 
information combining structure and function, which plays 
an extremely crucial role in tumor detection and localiza-
tion, staging, aggressiveness assessment, treatment option 
assistant, and patient follow-up of PCa [8–10]. Besides, to 
standardize the use of mpMRI, the Prostate Imaging Report-
ing and Data System (PI-RADS) was presented by the Euro-
pean Society of Urogenital Radiology (ESUR) in 2013 [8] 
and an updated version (PI-RADS v2) in 2015 [11] which 
has been keeping updating and supplementing up to now 
[12, 13]. Nevertheless, there are also some limitations, such 
as invasive and with biopsy errors of MR-directed biopsy 
(MRDB), the lack of consistency and nonquantitative nature 
of dynamic contrast-enhancement-MRI (DCE-MRI), not 
providing recommendation regarding the best threshold, 
unavailable 3D tumor volume delineation, and a large degree 
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of subjectivity related to imaging quality, radiologists, and 
urologist with PI-RADS [14–18].

Compared with traditional medical imaging, radiomics 
has the strong ability of extracting more critical and com-
prehensive information of lesions with high throughput by 
quantitative methods [19–21]. It enables automatic locali-
zation and characterization of PCa as well as identifies the 
great value of grading and staging, therapeutic evaluation, 
prognostic analysis, and even genomics, helping a lot in 
clinical diagnosis and treatment decisions. Hence, this arti-
cle reviews the basic concepts of radiomics and its current 
state-of-the-art in PCa.

Basic concepts of radiomics in PCa

Definition

“Radiomics” was first mentioned by Gillies et al. [22] in 
2010 to describe the extraction of quantitative features from 
image images. In 2012, Lambin et al. [19] formally put for-
ward the definition of “Radiomics” for the first time, as ana-
lyzing medical image data quantitatively that extracting a 
large number of features from medical images with high 
throughput and then transforming them into high resolu-
tion and deep-going mineable database with automatic or 
semi-automatic software. In the same year, Kumar et al. [23] 
expanded the definition of radiomics to extraction and analy-
sis of a large number of advanced and quantitative image 
features from medical imaging such as computed tomog-
raphy (CT), positron emission tomography (PET), or MRI 
with high throughput.

Process of radiomics

Radiomics is a multi-disciplinary technology, of which the 
core steps include data acquisition, features selection, model 
building, and analysis, aiming at converting routine clini-
cal images into mineable data, with high fidelity and high 
throughput.

The process of radiomics generally consists of several 
closely related steps as followed:

1. acquiring high-quality standardized imaging data and 
reconstruction;

2. segmentation of the region of interest (ROI) or the vol-
ume of interest (VOI) manually or automatically with 
computer-assisted contouring;

3. high-throughput features extraction and quantification;
4. feature selection and construction of clinical prediction 

models;
5. validation of the models and establishment of shared 

databases [19, 23, 24].

Image acquisition and reconstruction

Acquisition of high-quality images is the basis of radiomics, 
thus, it is pivotal to standardize the process of data acquisi-
tion and reconstruction. Those imaging data are obtained 
with CT, MRI, PET/CT, or PET/MRI. CT is mainly used 
to evaluate the density, shape, and texture characteristics 
of lesions due to its high spatial resolution, while it is not 
recommended for PCa because of without characteristic 
manifestation. MRI, especially mpMRI is widely used for 
the analysis of PCa lesions because of its better soft-tissue 
resolution and comprehensive information. Functional MRI 
such as diffusion weighted imaging (DWI) and DCE-MRI 
extracts more image features about cell structure and micro-
vascular perfusion, meanwhile, tissue metabolism informa-
tion can be provided by PET/CT or PET/MRI [10, 25–27].

However, the robustness could be affected by many fac-
tors, such as pulse sequence, FOV, slice thickness et al. of 
PCa-widely-used MRI. The reproducibility and repeatability 
of image data characters rely heavily on standardized image 
acquisition protocols. In addition, calibration of imaging 
settings is crucial as images acquired at different imaging 
settings may have poor repeatability [28]. Therefore, great 
efforts have been made by many international organizations, 
such as Radiological Society of North America, the Society 
of Nuclear Medicine and Molecular Imaging, the Interna-
tional Society of Magnetic Resonance in Medicine, and the 
World Molecular Imaging Society [24] to define the acquisi-
tion and reconstruction standards for radiomics.

Segmentation

Image segmentation, referred as delineation of the target 
area (such as tumor), is the premise of data extraction to 
ensure that the follow-up work goes on well. There are gen-
erally three ways of segmentation: manual, semi-automatic, 
and automatic, of which the former two are mostly used at 
present. Among these methods, manual segmentation has 
the advantage of high accuracy, especially for most tumors 
with clear boundaries but irregular shape. However, man-
ual segmentation is time-consuming with low efficiency 
and inter-operator variability. For PCa tumors with blurred 
margins, the heterogeneity in locating the tumor bounda-
ries by different radiologists can cause limited data repeat-
ability. Automatic or semi-automatic segmentation, on the 
contrary, can reduce this heterogeneity. Nevertheless, they 
are not precise enough in some confusing components with 
limited interpretability of models that need further improve-
ment. There are many algorithms developed for segmenta-
tion, such as region-growing method [29], graph-cuts algo-
rithm, atlas-based segmentation [30], volumetric CT-based 
segmentation [31], semi-automatic segmentation [32], active 
contours algorithm [33], live-wire-based segmentation [34], 
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etc. Currently, several software packages are available for 
segmentation, including ITK-SNAP (www.itksn ap.org), 
3DSlicer (www.slice r.org), MIM (www.mimso ftwar e.com) 
and ImageJ (https ://image j.nih.gov/ij/), etc. Automatic seg-
mentation will be encouraged strongly in the future while 
requires large data sets for training.

Feature extraction and quantification

Extraction and quantification of the imaging features which 
could characterize the attributes of the target area are the 
heart of radiomics. There are two types of features extracted 
in radiomics: “semantic” and “agnostic” features [24]. The 
former “semantic” is used to describe qualitative morpho-
logical features such as size, shape, location, vascularity, 
speculation, necrosis, and attachments or lepidics. The latter 
“agnostic” refers to invisibly quantitative description of het-
erogeneity of lesions such as textures, histogram, wavelets, 
Laplacian transforms, Minkowski functionals, and fractal 
dimensions. Textures can be obtained through first-, second-, 
and high-order statistical methods generally. The first-order 
features based on histogram mainly include maximum, mini-
mum, average, standard deviation, variance, energy, entropy, 
sharpness, skewness, and kurtosis, gray-scale, which acquire 
relevant statistical information by frequency distribution of 
different gray levels in ROI. Second-order texture feature 
algorithms include gray-level co-occurrence matrix (GLCM) 
[35] and gray-level run-length matrix (GLRLM) [36]. High-
order algorithms customarily make use of neighborhood 
gray-tone difference matrix (NGTDM) [37] and gray-level 
size zone matrix (GLSZM) [38]. As for methods based on 
models or transformation, Laplacian transforms are often 
utilized in image preprocessing and wavelet transform is in 
extracting texture features from sub-images to mine informa-
tion more deeply. Similarly, a lot of software packages have 
been put into features extraction such as IBEX [39], MaZda 
[40], Pyradiomics [41], CERR [42], ePAD [43], LifeX [44], 
and some other R-based or MATLAB-based programs. 
Cooperative use of different software may help to acquire 
more comprehensive radiomics features.

Feature selection and construction of clinical prediction 
models

To avoid some algorithms failure caused by high dimen-
sionality of feature space, reduce over-fitting, improve the 
model stability, and shorten the training time, feature selec-
tion will be carried out before modeling. Fisher’s discri-
minant ratio, mutual information feature selection (MIFS), 
maximal relevance and minimum redundancy (mRMR), 
principal component analysis (PCA), consensus clustering 
(CC), locally linear embedding (LLE), etc., are common 
feature-selecting methods [45–47]. Database and model 

construction are a breakthrough point of radiomics analysis 
that could be applied as a powerful assistant tool for diagno-
sis and treatment effect prediction. After that, the classifier 
or prediction model is usually built with machine learning 
algorithms, which mainly known as Support Vector Machine 
(SVM) [47, 48], Logistic Regression [49], Random Forest 
(RF), Decision Tree (DT), clustering analysis, etc. Besides, 
Convolutional Neural Network (CNN), Artificial Neural 
Network (ANN), K-Nearest Neighbor (KNN), Holistically 
Nested Network (HNN) [50, 51], etc., which belong to rapid-
developing deep learning, really accelerated the pace of radi-
omics progress. The establishment of database and modeling 
is a complex and challenging process, which is necessary to 
strengthen the cooperation of multi-disciplinary and multi-
team especially medical science and engineering, so as to 
standardize management and make efficient use of images 
feature data, as well as to build stable and accurate models.

Data sharing and mining

Radiomics is a bigdata analysis method, inevitably, whose 
results may be affected by some relevant factors such as the 
single source of research objects, different imaging equip-
ment and parameters, complexity of image segmentation and 
feature extraction, etc. Thus, validation in multiple centers is 
quite of necessary, so as to improve the stability and repre-
sentativeness of data. Though it is really hard to work radi-
omics done, we need to capture valuable data and share them 
across institutions to accumulate sufficient numbers for sta-
tistical power, as the QIN [52] proposing. Also, it is quietly 
important to make great efforts to mine data more deeply.

The current state‑of‑the‑art of radiomics 
in PCa

In PCa, radiomics has been intensively applied to tumor 
detection, localization, staging, aggressiveness assessment, 
treatment decision-making assistant, and patient follow-up.

Detection and diagnosis

Accurate tumor diagnosis and staging is the cornerstone of 
proper patient management. Cameron et al. [53] proposed 
a quantitative comprehensive feature model called MAPS 
based on radiomics for automatic detection of PCa and 
achieved an accuracy (ACC) of 87%. Furthermore, Khal-
vati et al. [54] designed a new automatic mpMRI texture 
feature models incorporating computed high-b (CHB-
DWI) and correlated diffusion imaging (CDI). It helped to 
improve radiomics-driven detection of PCa significantly 
compared to conventional mpMRI models. And the ACC 
and area under the curve (AUC) of the receiver-operating 
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characteristic (ROC) of the full modalities model reached 
0.82, 0.86 and 0.88, 0.88 using sensitivity and specific-
ity, respectively, as performance criteria. Another study 
by Wibmer et al. [55] using MRI in 147 patients with PCa 
confirmed by biopsy showed that Haralick texture features 
derived from T2-weighted images and apparent diffusion 
coefficient (ADC) maps had the potential to differentiate 
PCa and non-cancerous prostate tissue. In the discrimina-
tion between clinically significant PCa (csPCa) and clini-
cally insignificant PCa (ciPCa), Min et al. [56] demonstrated 
that mpMRI-based radiomics signature had the potential 
to noninvasively work it done using a cross-validation of 
a machine learning method, which may help clinicians to 
facilitate prebiopsy and pre-treatment risk stratification 
(AUC, sensitivity, and specificity are 0.823, 0.841, and 
0.727, respectively). Furthermore, more useful parameters 
with good performance are being excavated. For instance, 
Cuocolo et al. [57] thought that the surface area-to-volume 
ratio (SAVR) derived from ADC maps was recognized as 
the most promising tool in the discrimination of csPca from 
non-csPca, outperforming other shape features even such 
as lesion volume and maximum diameter (AUC = 0.78). As 
for identifying lesions in transition zone (TZ) and peripheral 
zone (PZ), Ginsburg et al. [58] suggested that a zone-aware 
classifier  CPZ significantly improved the accuracy of cancer 
detection in the PZ, with the AUC of 0.71.

There are also PI-RADS related studies pointing out that 
MR radiomics could help to improve the performance of 
PI-RADS v2 in clinically relevant PCa [59], with the aid 
of which the sensitivity significantly increased (79–94.4% 
in PZ PCa, 73.4–91.6% in TZ PCa). Though the samples 
were small (< 100). Similarly, Chen et al. [60] compared 
radiomics-based analysis with PI-RADS v2, which indicated 
that T2 W- and ADC-based radiomics models showed high 
diagnostic efficacy in distinguishing PCa vs. non-PCa at a 
high ACC of 0.991, as well as in high-grade vs. low-grade 
(ACC 0.867). Those are complementary to the refinement of 
specific standards and optimization model both each other.

Aggressiveness evaluation and staging

As the gold standard for PCa aggressiveness assessment 
[61], Gleason grading system plays an important role in the 
stratification of risk for PCa. Radiomics-combined patterns 
can impact clinical outcomes, treatment selection, and the 
determination of disease status noninvasively. In this aspect, 
Wibmer et al. [55] reported that entropy derived from the 
ADC map is significantly associated with PCa Gleason 
score (GS) in PZ, independently from the median ADC 
value (P < 0.05). Nketiah et al. [62] worked on distinguish-
ing GS3 + 4 from GS4 + 3 PCa with several T2 W MRI-
derived textural features and MRI parameters, among which 
angular second moment (ASM) and entropy produced the 

best results (AUC = 0.83, both). As the first study that had 
implemented cross-modality intensity statistics for identify-
ing radiomic features associated with GS, Chaddad et al. 
[63] presented a novel type of radiomic analysis model based 
on joint intensity matrices (JIMs), then evaluated its ability 
of predicting the GS in PCa patients, and compared it with 
GLCM. Final results showed that JIMs, which were sug-
gested as a complementary biomarker to predict PCa GS, 
described the heterogeneity across mpMRI images better 
than GLCM (AUC of 78.37% vs 68.62% for GS ≤ 6, 80.54% 
vs 71.09% for GS3 + 4, and 62.65% vs 60.39% for GS ≥ 4+3, 
respectively). Then, they tested and confirmed the hypoth-
esis that radiomic features extracted from mpMRI could 
predict the GS of patients with PCa in the same year [64]. 
Their research provided a reference for guiding the treatment 
planning of PCa, and also enlightened a new way for our 
future studies that multi-classification method can be applied 
to extract and analyze new multi-modal features.

Treatment evaluation and prognosis analysis

The management of advanced PCa has changed substantially 
with the availability of multiple effective novel treatments, 
which has led to improved disease survival. The imaging 
more precise, the earlier detection of metastatic disease 
and identification of oligometastatic disease more accurate 
are, so as to optimal assessment of treatment response. In 
prostate focal therapy, it is of great importance to localize 
malignant lesions accurately to increase biological effect 
of the tumor region while achieving a reduction in dose to 
non-cancerous tissue. Thus, a radiomics-based radiotherapy 
planning framework had been presented by Shiradkar et al. 
to generate targeted focal treatment plans [65]. It could boost 
dose to the cancerous lesions whilst minimize damage to the 
surrounding structures for brachytherapy and EBRT, as well 
as reduce treatment related side effects. Walsh et al. [66] pro-
vided a ‘proof-of-concept’ methodology enabling the deter-
mination of a threshold 5% that would most likely benefit 
from proton therapy prospectively. It justified the selection 
of proton-EBRT (P-EBRT) or photon-EBRT (X-EBRT) for 
PCa patients in a clinical decision support system (CDSS). 
For monitoring treatment changes, radiomics also plays a 
unique role. Abdollahi et al. compared radiomics features 
between pre- and post-radiotherapy and final results told that 
radiomics was being potentially useful imaging biomark-
ers for predicting the complications and structural changes 
in the bladder wall of PCa after RT (the highest AUC mean 
0.68, of pre-IMRT T2W radiomics). Feature changes had a 
good correlation with radiation dose and radiation-induced 
urinary toxicity [67, 68].

In addition, besides the lesion itself, the PCa-associ-
ated diseases with high risk and bad prognosis should not 
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be underestimated. A model combining texture analysis 
(TA) and machine learning for predicting the presence of 
histopathological extraprostatic extension (EPE) in PCa 
was suggested by Stanzione et al. [69], of which classi-
fier Bayesian network (BN) showed high diagnosis ACC 
(82.3%). Besides, extracapsular extension (ECE) may 
affect clinical decisions and prognosis, which needs to be 
predicting to help on surgical planning and reduce the risk. 
Ma et al. had proved the value of radiomics in preoperative 
prediction of ECE with a high ACC at 83.58% better than 
radiologists, and demonstrated the radiomics signature 
yielded a good performances for discrimination, calibra-
tion, and clinical usefulness [70, 71].

Radiogenomics

Radiogenomics is an encouraging field that combines 
genomics and medical imaging techniques, considered as 
a bridge connecting radiomics with genomics [72], while 
some challenges still need to be addressed. At present, 
the application of this technique in PCa is relatively less 
extensive and in-depth than that in other organs tumor 
such as brain, lung, or liver [72, 73]. Since PCa clini-
cal results are closely related to phosphatase and ten-
sin homolog (PTEN), loss of which is associated with 
increased clinical aggressive phenotype and mortality, 
related studies are giving out valuable potential. For 
example, McCann et al. [74] investigated the association 
of mpMRI features and PZ PCa, as a result of weak but 
significant negative correlation between GS and PTEN 
expression (r = − 0.30, p = 0.04) and between kep and 
PTEN expression (r = − 0.35, p = 0.02). Similarly, Switlyk 
et al. [75] explored the relationship between clinicopatho-
logic and mpMRI features s in 43 PCa patients underwent 
radical prostatectomy. They found that low PTEN expres-
sion significantly corresponded to low ADC value in PCa, 
whilst PTEN expression was negatively associated with 
lymph-node metastasis (bead arrays, p = 0.008; RT-qPCR, 
p < 0.001). On the other side, Stoyanova et al. [76, 77] 
adopted a unique approach and performed radiogenomic 
analysis on PCa patients underwent MR-guided biopsies. 
Radiomics features associated with prognostic biomark-
ers were first identified in that approach, allowing a more 
accurate radiomic–biological correlation significantly 
(≥ 0.9 in TRPM8, DPP4, and GCNT1). While the samples 
were small (6 patients, 17 biopsy samples), further large-
scale repeatable research is needed. As a relatively new 
imaging branch, radiogenomics is evolving and expected 
to play an important role in the clinical treatment of PCa, 
with an ultimate goal to predict prognosis and treatment 
response.

Habitat‑based radiomics

Habitat imaging has enormous utility to get insights of 
tumor phenotype and microenvironment quantitatively [78, 
79]. And as we know, intratumoral heterogeneity has long 
been a tricky obstacle in the diagnosis and management. For 
answering that, habitat-based radiomics was born at the right 
moment. Defining sub-regions and extracting habitat-based 
features will be added into the conventional process.

In 2018, Parra et al. [80] took use of perfusion curve 
patterns defined by DCE of mpMRI to identify the habitat 
of PCa. They evaluated both DCE and ADC features and 
affirmed the DCE features’ value for discriminating csPCa 
and ciPCa (with AUC of 0.82). Then, in the next year, they 
investigated prostate habitats by analyzing seven quantita-
tive DCE features based on the late area under the DCE 
time-activity curve (H-AUCf) [81], which was found of great 
value for predicting the csPCa (with best AUC of 0.82, 95% 
confidence interval (CI) [0.81–0.83]). Habitat-based radiom-
ics may be a hot trend, though there is very little research 
on PCa now. Thus, well-designed prospective studies with 
high-quality data are required to strengthen it in future work.

Deep learning

Deep learning, as the best promising method for radi-
omics, has been putting a step forward in radiomics. For 
instance, several studies focusing on PCa segmentation 
relying on deep learning have shown promising results 
recently. Actually, Liao et al. [82] have attempted for auto-
matic MRI prostate segmentation by deep learning frame-
work in 2013. In 2017, Cheng et al. [51] achieved auto-
mated MRI prostate segmentation using HNN and fivefold 
cross-validation, with Dice similarity coefficient (DSC) 
of (89.77% ± 3.29%) and a mean Jaccard similarity coef-
ficient (IoU) of (81.59% ± 5.18%). In 2019, Zhu et al. [83] 
proposed a boundary-weighted domain adaptive neural 
network (BOWDA-Net), which overcame the complexity 
between prostate and other structures and helped to seg-
ment prostate more accurate and sensitive (with high DSC 
of 89.67% and overperformed other methods, p < 0.05). 
However, it was limited as it worked on small data sets. 
Otherwise, to improve the performance in PCa diagno-
sis and treatment planning, Alkadi et al. [84] proposed a 
deep encoder–decoder CNN for detection and localization 
of PCa in T2WI images with gratifying results (average 
AUC of 0.995, ACC of 0.894, and recall of 0.928). Song 
et al. [85] also proposed deep CNN but in mpMRI for 
PCa diagnosis and prediction, with AUC of 0.944 (95% 
CI 0.876–0.994). However, mono-modality system was not 
as superior as multi-modality in model performance and 
generalization, which require larger data sets to validate 
in. At the same time, artificial intelligence (AI) provides 
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benefits at the expensive of a high false-positive rate [86, 
87] that needs to be under consideration and optimized.

Future directions, development, 
and potential issues

The application of AI in PCa is supposed to meet the clini-
cal demands closely and transformation of radiomics into 
the clinic may require a more comprehensive understand-
ing of the underlying morphologic tissue characteristics 
they reflect.

As heterogeneity is a well-known chasm of PCa, persis-
tent action should be taken to reduce the impact of hetero-
geneity, as well as improve the accuracy and objectivity in 
the further work. In addition, its multifocal nature prompts 
us to concentrate on PZ, TZ, surrounding tissue, and tumor 
microenvironment. Additionally, a minority of the prior 
studies focus on radiomics-guided treatment, which needs 
to be supported in further work.

Moreover, images’ differences can be tough due to 
the lack of uniform standard in scanning parameters and 
reconstruction algorithms for imaging equipment. Even in 
the same equipment, differences in contrast agent, scan-
ning thickness, convolution kernel, and even coils (body 
or endorectal), etc., will have potential influences on data 
analysis. Most of the existing studies are small sample 
exploration in a single institution, of which conclusions 
are short of extensive validation. Therefore, radiomics on 
PCa must be repeatedly refined and externally validated in 
multi-center, large-sample, randomized-controlled clinical 
trials, which can better interpret the complexity of PCa, 
by the way, meet the requirements of precision medicine. 
Perhaps, it is a good choice to unify standards, share data, 
or open source.

In addition, the application of AI in PCa should not be 
limited to simple computer-aided diagnosis (CADx) or 
machine learning, but deep learning to assist the comple-
tion of large data analysis to create more value and more 
radiologists should be involved in the sustainable develop-
ment task of AI. However, information security and privacy 
and the ethical issues of AI may pose a barrier when mining 
data depth by depth.

At present, radiomics alone is facing at a number of great 
challenges. For the foreseeable future, the multi-dimensional 
and multi-model radiomics combined with clinical and lab-
oratory information and other omics has become the next 
trend of AI-driven medicine. And that is exactly what the 
modern imaging rapidly evolving and expanding aiming at.

Conclusion

In conclusion, radiomics has the potential to become a 
useful assistant tool in clinical oncology imaging, provid-
ing important information with the characters, progno-
sis, treatment prediction, and response of tumors in PCa. 
However, the potential value of radiomics in PCa has not 
been fully investigated. In the face of great opportunities 
and challenges, we need to spare no efforts to expand it 
and derive more clinically meaningful trends, as well as 
to meet the developing needs of precision medicine and 
enhance precision medicine initiatives.
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intRoduction
Radiotherapy is a major non-surgical technique in the treat-
ment of cancer. A technology that was once expected to 
become obsolete in the face of chemotherapy and biological 
therapy is now used in around 40–60% of all cancer patient 
cases.1–3 This is partly due to technological advances, such 
as fixed- and rotational-field intensity modulated radio-
therapy (IMRT) techniques and image-guided radiotherapy 
(IGRT), leading to more accurate radiotherapy.4 The field 
has entered an exciting era with rapidly evolving devel-
opments such as image-guided four-dimensional adap-
tive radiotherapy (ART), integration of novel & advanced 
quantitative imaging and future developments on the 
horizon such as stratified or personalised radiotherapy.5–10 
At the heart of these developments is the central role of 
optimised, high quality and efficient treatment planning. 
Complex IMRT techniques have to be inversely planned; 
this means that a computerised treatment plan is generated 
by defining a set of objectives and constraints for tumour 
coverage and healthy tissue sparing and the software uses 
these to generate a large number of radiation segments to 
deliver the required dose. Even though the inverse planning 

process is highly computerised, it is still human resource 
intensive, and typically a high level of treatment planner 
intervention is required to ensure a high-quality plan is 
produced. A typical inverse IMRT planning pathway is 
shown schematically in Figure  1 and described in detail 
in the figure legend. Especially, the depicted interactive 
feedback loop can lead to variability in inter- and intra-
centre plan quality depending on the skills and experience 
of the operator, which could affect clinical outcome11 and 
the efficiency in which a plan is produced. Such resource 
requirements may also limit access to advanced IMRT and 
emerging treatments such as adaptive radiotherapy, or to 
suboptimal usage of these techniques.

Efforts to streamline and standardise the treatment plan-
ning process are ongoing. In the last few years, there has 
been significant progress into research and development 
of automated inverse treatment planning approaches, with 
most commercial manufacturers now offering some form 
of solution. There is a rapidly growing body of research 
published in the literature. These algorithms could signifi-
cantly improve the efficiency, consistency, and quality of 
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ABstRAct

Radiotherapy treatment planning of complex radiotherapy techniques, such as intensity modulated radiotherapy and 
volumetric modulated arc therapy, is a resource-intensive process requiring a high level of treatment planner interven-
tion to ensure high plan quality. This can lead to variability in the quality of treatment plans and the efficiency in which 
plans are produced, depending on the skills and experience of the operator and available planning time. Within the last 
few years, there has been significant progress in the research and development of intensity modulated radiotherapy 
treatment planning approaches with automation support, with most commercial manufacturers now offering some 
form of solution. There is a rapidly growing number of research articles published in the scientific literature on the 
topic. This paper critically reviews the body of publications up to April 2018. The review describes the different types of 
automation algorithms, including the advantages and current limitations. Also included is a discussion on the potential 
issues with routine clinical implementation of such software, and highlights areas for future research.
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treatment planning, leading potentially to improved patient 
access and improved patient outcome through maintaining 
and improving high-quality radiotherapy. In 2014, the National 
Health Service in England and Cancer Research UK published 
a 10 year Vision for Radiotherapy in the UK to allow patients 
to receive advanced and innovative radiotherapy that is cost-ef-
fective, and one suggestion to facilitate this is through the 

implementation of software that automate parts of the planning 
process.1

This paper critically reviews the body of publications up to April 
2018. The review describes the different types of automation 
algorithms for IMRT planning, including the advantages and 
current limitations. Also included is a discussion on the potential 
issues with routine clinical implementation of such software, and 
highlights areas for future research.

liteRAtuRe seARch Methodology
The literature was searched using Elsevier Scopus®, MEDLINE, 
Web of Science™ using the following keywords and logic state-
ments: (“automated planning” OR “automatic planning” OR 
“automation planning” OR “automate planning” OR “knowl-
edge-based” OR “Pareto” OR “multicriteria optimisation” OR 
“multicriteria optimization” OR “template based optimization” 
OR “template based optimisation” OR “interactive optimiza-
tion” OR “interactive optimisation” OR “artificial intelligence” 
OR “AI” OR “artificial neural network” OR “dose prediction” 
OR “machine learning” OR “RapidPlan” OR “AutoPlan” OR 
“rayNavigator”) AND (“radiotherapy treatment planning” OR 
“radiation therapy treatment planning” OR “IMRT treatment 
planning” OR “intensity modulated radiotherapy treatment 
planning” OR “VMAT treatment planning” OR “volumetric 
modulated arc therapy treatment planning” OR “Tomotherapy 
treatment planning” OR “radiotherapy planning” OR “radiation 
therapy planning” OR “IMRT planning” OR “intensity modu-
lated radiotherapy planning” OR “VMAT planning” OR “volu-
metric modulated arc therapy planning” OR “Tomotherapy 
planning”).

The search was made on the 7 May 2018 and included articles 
published up until the end of April 2018. Only full peer-reviewed 
original research articles written in English were included. There 
was no specific limit set on the date of earliest publication. After 
filtering to remove journals unrelated to healthcare and merging 
the searches from the different databases, 342 eligible records 
remained. These records were manually scanned based on the 
title to highlight articles for inclusion. The criteria were to retain 
articles that clearly described either the idea, development or 
clinical application of automated inverse treatment planning 
for IMRT, VMAT, or tomotherapy. Articles that only described 
automatic selection of beam angles, and did not also describe 
subsequent automation of the inverse IMRT or VMAT treatment 
planning, were excluded from this review. While these studies 
are interesting, the decision was made to apply this criterion to 
focus the review on the current topical issue of automated inverse 
planning for IMRT, VMAT or tomotherapy. In articles where 
the title was deemed ambiguous as to whether it fit the criteria 
for inclusion, the abstract was read. In total, 171 peer-reviewed 
papers in scientific journals were included up until the end of 
April 2018. The earliest publication on the topic of automated 
planning in IMRT was in 2003; there were other publications 
pre-2003 related to three-dimensional conformal radiotherapy, 
however while important, these were excluded from this critical 
review. Henceforth, we will succinctly refer to automated inverse 
IMRT planning as “automated planning”.

Figure 1. A typical manual IMRT treatment planning path-
way. The example shown is for a prostate + seminal vesicle 
case. The steps are as follows: (1) CT scan with PTVs and 
OARs delineated; here the colours of ROIs are red: Prostate 
PTV, dark blue: SV PTV, yellow: bladder OAR, brown: rectum 
OAR. (2) create a range of “helper” (ROI) to aid the optimiser; 
e.g. the part of an OAR not overlapping with the PTV, PTVs 
overlapping with each other, ring structures to control dose 
spillage. In the example in Step 2, the ROIs shown are yellow: 
bladder cropped from prostate PTV, green: rectum cropped 
from seminal vesicle PTV, magenta: SV PTV cropped from 
prostate PTV, blue: prostate PTV unedited as it is the higher 
dose prescription than SV PTV. Step (3) set-up beam geom-
etry. (4) Define the initial optimisation objectives either from 
scratch or from a class solution. (5) Run the inverse optimiser 
until it converges to a solution, calculate dose distribution. (6) 
Evaluate the resulting plan, if it is clinically acceptable pro-
ceed to Step 8, otherwise go to Step 7 to adjust the opti-
misation objectives. The part shaded in green (steps 5, 6, 7) 
is the iterative process of optimisation required by the plan-
ner to arrive at a clinically acceptable treatment plan to be 
approved by the clinician in Step 8. After this step, the plan 
will go through the quality control process and preparation 
for treatment, not shown on the flow chart. IMRT, intensity 
modulated radiotherapy; OAR, organ at risk; ROIs, regions of 
interest; PTV, planning target volume; SV, seminal vesicle.
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Figure  2 shows the number of publications per year and the 
cumulative number of papers over the years. The curve exhibits 
some of the characteristics described by Rogers.12 There is the 
initial “lag” period with a steady trend until 2011. After this, there 
is a sharper uplift in the number of papers published per year; 
described as the “take-off ” phase. Around 2008, major radio-
therapy manufacturers began releasing commercial systems and 
this upward trend represents the effect of the early innovations of 
automated treatment planning being translated into widely avail-
able software. There is no evidence yet of the tail-off phase where 
the innovation has been so widely adopted that new research is 
limited. This graph, of course, does not demonstrate the rate of 
clinical adoption as some of the papers are multiple publications 
from the same group. Moreover, not all papers related to clinical 
application.

Through the literature search, three different paradigms of 
automated planning that were employed in clinical practice 
are apparent. These are: knowledge-based planning (KBP),13–85 
protocol-based automatic iterative optimisation (PB-AIO)86–110 
and multicriteria (or also called multiobjective) optimisation 
(MCO).111–183

BAckgRound on the diffeRent AutoMAted 
PlAnning AlgoRithMs
Knowledge-based planning
An approach to improving the speed, efficiency and reducing 
variability in treatment planning is using so-called KBP 
approach. KBP is defined as any approach which directly utilises 
prior knowledge and experience to either predict an achiev-
able dose in a new patient of a similar population or to derive a 
better starting point for further trial-and-error optimisation by a 
planner. There are two distinct approaches to this: the atlas-based 
approach and the model-based approach.

In the atlas-based method,13,14,25,36,47,58 the knowledge base is 
used to select the closest matching patient(s) to give a better 
starting point for the inverse optimisation than would be provided 
by conventional template-based approaches. Chanyavanich et al 

investigated an approach of predicting the starting treatment 
machine parameters based on a database of prior prostate cancer 
fixed-field IMRT plans.58

Dose-volume histogram (DVH)-guidance is one of the 
approaches of model-based KBP.15–24,26–32,69,80,84,85 In this 
approach, a large number of clinically accepted treatment plans 
and contours are used to characterise the relationships between 
anatomical and geometric features for a given anatomical site 
to build a predictive DVH model for that site. For any new 
patient treated in the same anatomical site, this knowledge can 
be used to predict the achievable DVH based on the features of 
similar contours and quality of treatment plan; see an example in 
Figure 3. A range of different implementations of DVH-guided 
KBP has been proposed and developed. Commercially, the 
DVH-guidance KBP approach is utilised by the Varian Eclipse® 
Treatment Planning System as RapidPlan™ (Varian Medical 
Systems, Palo Alto, CI).

A known limitation of the DVH-guidance approach is that the 
DVHs are only predicted for the regions of interest that are 
delineated. This means that regions of tissue outside of delin-
eated regions of interest (ROIs), which a human planner may 
also optimise to reduce dose, may not be taken into account, e.g. 
to enhance conformality or avoid hot spots. Additionally, DVHs 
do not provide any spatial information. An interesting approach 
that has been investigated to overcome these issues is voxel-based 
dose prediction. Rather than predicting DVHs, the idea is to use 

Figure 2. Trend showing the number of peer-reviewed pub-
lications on innovations in automated planning software per 
year, and the cumulative number of publications. The graph 
shows a significant increase from 2011.

Figure 3. An example of DVH prediction KBP in a 3-dose level 
localised prostate cancer case. The shaded lines are the pre-
dicted range of achievable DVHs for the different OARs. The 
solid lines are the actual achieved DVH in the plan. This exam-
ple is from Varian RapidPlan and the dashed lines and arrows 
are the optimisation objectives that have been generated by 
RapidPlan. Courtesy: Royal Surrey County Hospital NHS Foun-
dation Trust, Guildford, UK. DVH, dose-volume histogram; 
KBP, knowledge-based planning; OAR, organ at risk.
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knowledge from prior plans to build a model that can predict 
doses to individual voxels within the patient’s image.33–35,38,39 A 
limitation of the model-based dose prediction approach is that 
the plan quality for new patients strongly depends on the quality 
of plans generated in the past.

Protocol-based automatic iterative optimisation
The challenge with manually optimising a plan is that it is some-
times a time-consuming process to arrive at a clinically accept-
able plan. Moreover, it is often not clear if the plan could be 
better if further adjustments of the optimisation criteria were 
made. The clinically optimal plan is one where there is the best 
trade-off between normal tissue sparing and target coverage, 
taking into account the clinical requirements and priorities 
regarding sparing of the various tissues. For example, one may 
consider a head and neck cancer where the PTV abuts the spinal 
cord. In this case, it is typically the highest clinical priority to 
keep the spinal cord within tolerance and therefore, requires 
compromise of PTV coverage. It is relatively straightforward to 
achieve a plan that meets the spinal cord tolerance (and may. e.g. 
still achieve the PTV D95% objective). However, a better plan 
may be one that keeps the spinal cord just within tolerance while 
maximising the coverage of the PTV, as well as pushing the lower 
doses to other healthy tissue as low as possible. Achieving this 
better plan manually would require significant time, effort, and 
planner experience, as it requires iterative adjustment of opti-
misation criteria to keep challenging the optimiser to achieve a 
progressively better plan until no improvement in plan quality is 
possible. The success of performing this process manually and 
efficiently will depend on the skill and experience of the treat-
ment planner, and the time available to plan.

One approach to solve this is to automate the iterative adjustment 
of the optimisation objectives and constraints.86–88,98,104–110 The 
basic idea is to start with a user-defined template which has the 
required clinical objectives. The user can then input the priorities 
for mandatory (hard) constraints. The optimiser then generates a 
plan that meets all the objectives, at which point the high priority 
constraints are locked down and become hard constraints. A 
script is then put in motion which iteratively pushes the DVH 
of all of the structures to the point where the hard constraints 
were just breached, and then a step is taken back to the point 
where the breach did not occur. At this point, the plan cannot be 
pushed further and could be considered the optimum plan.

Tol et al107 developed an interface to move the mouse cursor on 
the computer screen automatically and thus adapt the optimi-
sation objectives in the Varian Eclipse VMAT optimiser. The 
interface detects the position of the DVH line for each ROI on 
the screen and iteratively moves fixed objectives to ones more 
challenging during the optimisation and was shown to be able 
to automate VMAT planning of head and neck cancer giving 
improved dosimetric results.107

Various authors have developed artificial intelligence (AI) 
systems which simulate the reasoning behaviour of a human 
planner to automatically adjust the optimisation parameters 
during the optimisation process.98,104,105,109 Such AI systems 

have been based on fuzzy logic theory whereby the trial-and-
error actions of expert human planners were converted into 
binary “IF-THEN” logic statements.

A commercially available solution is AutoPlanning within the 
Philips Pinnacle3 TPS (Philips Radiation Oncology Systems, 
Fitchburg, WI). The user initially generates a template (“Treat-
ment Technique”) which has the target prescriptions and the 
goals for organ at risk (OAR) sparing according to the required 
clinical protocol. For OARs, the user also specifies their clinical 
importance, from those that have low significance to those that 
have hard constraints. Based on the PTV(s) and OARs defined, 
the software automatically generates “dummy” optimisation 
structures such as those that take into account overlap between 
OAR and PTV, PTV ring structures to control dose fall, and 
various other “help” structures to control target uniformity and 
dose spillage to the rest of the body. There are also additional 
“advanced” settings to control dose fall-off, homogeneity and 
managing cold/hotspots, which initially have default factory set 
values or could be fine-tuned by the user. Based on the optimis-
ation contours and the settings used, the software automatically 
generates the starting optimisation criteria. The software then 
enters into a 5-loop iterative optimisation cycle to gradually fine-
tune the plan to achieve a solution based on the clinical protocol 
as defined by the user.89,103

Multicriteria optimisation
Another approach which seeks to overcome the issue of finding 
the optimal trade-offs between target coverage and sparing of all 
normal tissues is called MCO (also sometimes called multiob-
jective optimisation).121,131,140,143,146,184 Central to MCO is the 
concept of the “pareto optimal solution”; which is a plan that 
cannot be improved in any of the objectives without degrading 
at least one of the other objectives. There are two approaches 
to MCO, a posteriori and a priori approach. In the a posteriori 
approach, rather than the optimiser generating a single plan, 
multiple plans are automatically generated where each criterion 
is optimised to the extent where it cannot be improved upon 
without affecting at least one other criterion; each of these plans 
is a so-called pareto optimal solution. The schematic in Figure 4 
illustrates this concept with a graph of two competing criteria. 
The graph shows a large number of different feasible planning 
solutions, representing a variety of different permutations for 
criterion 1 and 2. The solid line represents the pareto front where 
improving one criterion inevitably leads to the worsening of the 
other and vice versa. Plans that lie on this front are the “pareto 
optimal solutions”; shown as blue circles in the schematic. The 
plans shown as diamonds are referred to as “dominated” because 
there is always a solution on the pareto front where at least one 
criterion can be improved. Pareto optimality by itself does not 
imply clinical optimality and pareto optimal plans can be clin-
ically highly undesirable. On the other hand, the best clinically 
acceptable plan is pareto optimal. Therefore, in the a posteriori 
approach the database of pareto optimal plans is interactively (a 
posteriori) navigated by the treatment planner to choose a clin-
ically optimal plan.127,131,140,144 The automation in this process 
is that the database of pareto optimal plans is automatically 
generated. The main issue with this approach is the number of 
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plans that are generated, since mathematically there is an infinite 
number of pareto optimal plans, and the intensive computing 
resource required can be a limiting factor. Moreover, especially 
in the case of a large number of clinical objectives, selection of 
a plan may be difficult and operator-dependent. The a posteriori 
approach has been implemented in the commercial RayStation 
TPS, and recently as an option in the Varian Eclipse TPS. In this 
approach, the dimensionality of the pareto fronts is dictated by 
the number of objectives, and thus also the number of plans that 
are required to construct the fronts. Craft and Bortfield describe 
a method to estimate the number of plans that are sufficient128 
and suggest that N+1 plans are sufficient, where N is the number 
of objectives. At the time of writing, this recommendation is the 
basis of the number of plans generated in RayStation rayNav-
igator. Different methods were described in the literature for 
interactively navigating the pareto fronts, using a navigation 
star127,131,140,144 or sliders, however, the premise is still the same. 
The lowest and highest values for each objective is displayed 
visually along with a starting dose distribution and DVH line. 
The user then uses the mouse to drag the objective of interest and 
in near real-time, the software finds the plans in the database that 
are better in the selected criterion, and then, via fast interpola-
tion, the dose distribution and DVH are updated.

In the a priori MCO approach, for each patient, only a single 
pareto-optimal plan is fully automatically generated. This plan 

has clinically desired trade-offs between all objectives, in line 
with the institution’s clinical protocol and treatment tradi-
tion.143,146,185 Optimization is based on a treatment site-specific 
protocol, a so-called “wish-list”, containing the objective func-
tions with assigned priorities and hard constraints that should 
never be violated. An example wish-list for automated plan 
generation with iCycle for localised prostate cancer patients 
is in Table  1. In an automatic multiobjective optimisation 
approach, the objectives are sequentially minimized according 
to their priorities to obtain a pareto optimal plan with favour-
able balances between all objectives. Wish-lists are treatment 
site specific, i.e. no patient-specific adaption is applied. They are 
generated in an iterative tuning process, involving the multidis-
ciplinary planning team. In this process, a first estimate of the 
wish-list is made based on a review of plans of recently treated 
patients, the clinical protocol, and initial team discussions. This 
wish-list is then improved in several iterations consisting of 
(1) use of current wish-list to automatically generate treatment 
plans for CT-scans of a small group of previously treated patients 
(typically five), (2) evaluate the automatically generated plans 
(including comparison with clinically applied plan), (3) update 
the current wish-list (new estimate), (4) go back to (1). This 
iterative improvement of the wish-list is stopped when further 
improvements of the wish-list are deemed not possible. This iter-
ative wish-list improvement has an intrinsic drive to improve 
the clinical plan quality. This a priori MCO approach has been 
developed and implemented in the Erasmus MC Cancer Insti-
tute in their “Erasmus-iCycle” software.129,143,146,162 Apart from 
beam profile optimisation, the system also features automated 
beam angle optimisation.161 As well as optimisation for regular 
linacs, Erasmus-iCycle has separate models for optimization 
of Cyberknife treatments186 and proton treatments (intensity 
modulated proton therapy, IMPT).187 Currently, Elekta AB 
(Stockholm, Sweden) is preparing a commercial implementation 
of the system for photon beams.150

clinicAl evAluAtion And iMPleMentAtion 
of AutoMAted PlAnning techniques
There are many studies in the literature which have clin-
ically implemented commercial and in-house imple-
mentations of PB-AIO, KBP, and MCO automated 
planning.42–46,48–57,59–68,70–79,81–83,89–97,99–103,150–155,157–166,168–177,179–181  
Most of these articles tackle the current commercial imple-
mentations of Varian RapidPlan (KBP), Pinnacle AutoPlan 
(PB-AIO), Raystation (a posteriori MCO), and Erasmus-iCycle 
(a priori MCO).

From the present literature review, 81 (~43%) papers were 
reporting on the clinical evaluation, implementation, or appli-
cation of automated planning. It was noted that most studies 
were retrospective and different methodologies were reported 
for evaluating automated plans and manual plans. The most 
popular method employed, in 67 of the 81 papers, was evalu-
ation based on comparing DVH metrics for PTVs and OARs, 
or deriving other metrics from DVHs such as conformity index, 
homogeneity, tumour control probability, normal tissue compli-
cation probability. Some papers used these in conjunction with 
qualitative blinded clinician evaluation which took the format of 

Figure 4. Schematic diagram of two competing criteria. The 
graph shows a large number of different feasible planning 
solutions, representing a variety of different permutations for 
criterion 1 and 2. The solid line represents the pareto front 
where improving one criterion inevitably leads to the wors-
ening of the other and vice versa. Plans that lie on this front 
are the “pareto optimal solutions”, shown as blue circles in the 
schematic. The plans shown as diamonds are referred to as 
“dominated” because there is always a solution on the pareto 
front where at least one criterion can be improved.
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either binary decisions on whether plans were clinically accept-
able95,162,169,172 or giving plans a ranking.93,103,164 Most studies 
are retrospective, comparing already delivered clinical plans 
with automatic plans. Voet et al performed a prospective study 
on automated planning of head and neck cancer with Eras-
mus-iCycle giving, for each new patient, the treating clinician 
the choice between a plan made with routine trial-and-error 
planning and an automatically generated plan.162 Hansen et al 
prospectively compared Pinnacle3 AutoPlan vs manual planning 
in head and neck cancer with blinded review by three clinicians 
to select the better plan.89

Knowledge-based planning
KBP has been clinically investigated in various clinical sites, with 
most studies reporting that KBP is at least as good, or (slightly) 
better, than manual planning with improved efficiency and consis-
tency, without manual intervention.42–46,48–57,59–68,70–79,81–83 
All of the published studies are via the use of the commercial 
implementation of KBP in the Varian RapidPlan solution. 
Reports have been published for head and neck cancer,72,79,82 
prostate cancer,62,66,78,83,188 cervical cancer,78 lung cancer,75,83,189 
spinal metastasis,63 breast cancer,65 upper gastrointestinal (GI) 
cancers,61,70,76 and lower GI cancers.190 Foy et al reported that 
KBP could reduce the VMAT planning of stereotactic body radio-
therapy of the spine from 1–1.5 h to around 10–15 min.63 Hussein 
et al reported on the clinical validation and benchmarking of the 

commercial RapidPlan KBP system for both IMRT and VMAT 
planning in prostate and cervical cancer. The authors highlighted 
that using the software “out-of-the-box” with the default settings 
for training the KBP models lead to automated plans with poor 
conformity, coverage and plan generation efficiency compared to 
the original clinical plans, and that an iterative process is required 
to fine-tune and optimise the model. After this refinement of the 
model was performed, the authors showed that RapidPlan was 
able to achieve better or comparable plans when compared to the 
original clinical plans.78

Typically, a dose prediction KPB model is trained for one partic-
ular technique and clinical site, meaning that the model has been 
characterised for that particular population of patients; take, e.g. 
a prostate static field IMRT model. Suppose that the treatment 
technique was changed to VMAT or the model was shared with 
a centre that does not have the capability for VMAT. An option 
is to create a VMAT specific model, which requires replanning 
of a large number of patients followed by the refinement of the 
model. However, as the KBP model predicts the dose based on 
the anatomy of the patient and not treatment technique, there 
is the potential that (in this example) the IMRT model could be 
used outside of its original scope for VMAT planning. This is an 
interesting research question to demonstrate how robust a model 
is to changing techniques and sharing between centres. Addi-
tionally, broadening the scope of the model further by including 

Table 1. An example wish-list for automated plan generation with Erasmus-iCycle for localised prostate cancer patients

Constraints

Volume Type Limit
PTV Max dose 105% of DPx

PTV Mean dose 101% of DPx

Rectum & anus Max dose 102% of DPx

PTV shell 50mm Max dose 50% of DPx

Unspecified tissues Max dose 105% of DPx

Objectives

Priority Volume Type Goal Parameters

1 PTV ↓LTCP 0.8 DPx = 78Gy, α = 0.8

2 Rectum ↓EUD 20Gy k = 12

3 OAR 2 ↓EUD 10Gy k = 8

4
PTV shell 5mm
Skin ring 20mm

↓Max dose
↓Max dose

80% of DPx
20% of DPx

5 Rectum ↓Mean dose 5Gy

6 Anus ↓Mean dose 5Gy

7 Bladder ↓Max dose 5Gy

8
PTV shell 15mm
PTV shell 25mm ↓Max dose

50% of DPx
30% of DPx

9 Left & right femoral heads ↓Max dose 50% of DPx

α, cell sensitivity;EUD, equivalent uniform dose;k, volume effect; LTCP, logarithmic tumour control probability; PTV, planning target volume;DPx, 
prescribed dose.
The priorities assigned to the objectives are used in the a priori MCO, guaranteeing for each patient generation of a pareto-optimal plan with 
clinically favorable balances between all treatment objectives. (Courtesy: A.W. Sharfo).
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both IMRT and VMAT plans may potentially improve plan 
quality. Cagni et al investigated the use of helical tomotherapy 
plans to create KBP models for prostate cancer and found that 
this could be successfully performed.53 Other areas of interest 
are whether a model that was trained for a particular clinical site 
could be used in another site with similar anatomy and similar 
relative dose levels to the original model. Some of these areas 
have been addressed in a limited number of studies but is still an 
area of active research.61,66,68,74,76,78 Wu et al investigated using 
a RapidPlan model trained on VMAT rectal plans treated in the 
supine position to create plans in patients treated with IMRT and 
those who were set up in the prone position. The study found 
that OAR sparing and plan consistency was improved but that 
the optimiser needs to be readapted to IMRT planning and that 
manual hotspot reduction is required.74 Most of the reported 
studies in the literature focussed on single institution analysis. 
The performance of a broad scope RapidPlan KBP model for 
oesophageal cancer was investigated by Fogliata et al,76 whereby 
the model took into account different dose prescriptions and 
tumour locations with the ultimate aim of determining whether 
the model could be shared amongst different centres where vari-
ations in clinical protocols can occur. The authors carried out the 
study across three centres, where one centre did not contribute 
any data to the model. In the latter centre, KBP resulted in supe-
rior plan quality. The study highlights the potential benefit of a 
heterogeneous data set, and this has also been highlighted by 
other studies that suggest that keeping statistical (but clinically 
relevant) outliers may be an advantage to the model strength.57,78

An apparent limitation of the KBP approach is that the models 
can only be as good as the training data that has been input in 
the first instance. Strictly speaking, the plans can be clinically 
acceptable but not the optimal plan. RapidPlan attempts to get 
around this by always placing the optimisation objectives for 
OARs lower than the predicted DVH such that it always tries to 
improve on the prediction.

Protocol-based automatic iterative optimisation
Papers in the literature have generally reported that PB-AIO, 
commercially implemented within the Pinnacle TPS, is either 
equivalent to or superior to manual planning regarding plan 
quality and efficiency in automatically generating IMRT or 
VMAT plans in various clinical sites.89–97,99–103 Hazell et al 
compared PB-AIO with manual planning of 26 IMRT head and 
neck cancer plans and evaluated 2 types of plans through DVH 
metrics and clinician-blinded reviews. They found comparable 
target coverage and better sparing of normal tissues, with all plans 
clinically acceptable without manual intervention.103 Hansen 
et al extended the analysis to VMAT and found similar results 
and reported that planner time was halved from 64 min using 
PB-AIO.89 Speer et al used a quantitative point-based scoring 
system where treatment plan parameters were scored to objec-
tively judge plan quality of PB-AIO over manual planning in head 
& neck cancer, where a score of 100 points indicates an optimum 
plan. They demonstrated automated plans using PB-AIO were 
better with an average score of 62.3 points compared to manual 
plans with a score of 59.1 points.100 Similar conclusions about the 
potential for PB-AIO to efficiently produce clinically acceptable 

plans for head and neck cancer have been reported.97,101.91 Nawa 
et al compared PB-AIO with manual planning in 23 prostate 
cancer cases. Comparison was performed using DVH objectives, 
and the study found target coverage and rectal dose was compa-
rable between PB-AIO and manual planning. There was a signif-
icant reduction of the dose to the bladder and femoral heads 
with PB-AIO compared to manual plans. This is potentially due 
to the manual plans not pushing these doses down further as 
they had already passed the clinical tolerances and more atten-
tion was paid to the harder to achieve rectal dose constraints. 
Additionally, the authors quantified a reduction in interoperator 
variability with PB-AIO.91 PB-AIO has been evaluated for hippo-
campal sparing whole brain radiotherapy87,99 and was found to 
result in comparable or better plans with minimal manual inter-
vention and expedited planning time which is essential in this 
palliative group of patients. Studies in oesophagus,92,95 and rectal 
cancer93 cases are also consistent in their conclusions about the 
potential benefit of PB-AIO over manual planning.

However, whilst the overall message in all of these papers is 
favourable for PB-AIO, some studies argue that PB-AIO is a tool 
to improve overall plan quality, but not necessarily to completely 
remove the need for manual optimisation103 and that for some 
particular cases, experienced planners performed better than 
PB-AIO.100 The quality of plans generated by Auto-Planning in 
Pinnacle has also been reported to be dependent on the input 
from experience treatment planners to set the initial user settings 
and define good clinical protocols which are also an important 
consideration.100

Multicriteria optimization
A posteriori MCO clinical implementations (all in RaySta-
tion) have been investigated and validated in different clinical 
sites including prostate cancer,168,169,171,176,179 head and neck 
cancer,164,171 brain,168 lung cancer,172 and lower GI cancers.177 
All studies report better or comparable plan quality with a 
reduction of planning time. Wala et al report that MCO using 
RayStation took approximately 1 h per case and achieved supe-
rior plan quality based on blinded review and DVH objective 
comparisons for localised prostate cancer.169 Other studies also 
report comparable or superior plan quality of a posteriori plans 
in prostate cases. Muller et al report a reduction in planning time 
by around 10 min for post-prostatectomy cases and 45 min for 
brain tumour cases.168 Chen et al used MCO to generate 20 field 
IMRT plans for prostate cancer and head and neck cancer to 
then use the resulting DVH information as the basis for defining 
optimisation objectives for VMAT plan optimisation. Using 
this method, they were able to match the quality of single arc 
VMAT with the quality of a 20 field IMRT plan (where there 
is high quality due to the large degree of freedom).171 Kamran 
et al evaluated the potential benefit of a posteriori MCO in 10 
patients with non-small cell lung cancer who were eligible for the 
RTOG 1308 Phase II trial.172 Evaluation of plan quality between 
MCO and manual planning was performed via a double-blinded 
review and DVH metrics. While all the MCO plans passed the 
DVH objectives, it was noted that clinicians preferred 8/10 of the 
MCO plans. The two manual plans were chosen due to better 
skin sparing and a lower maximum dose to the spinal cord, even 
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though the oesophagus dose was lower. Planning time improved 
by a median of 88 min.172

Navigation-based (a posteriori) MCO could potentially avoid 
the often iterative interaction between planner and physician to 
arrive at a clinically acceptable plan by involving the clinician 
at an earlier stage. However, it is not clear as to whether, prac-
tically, this results in an improvement in the planning workflow 
particularly given the often limited clinician time. Müller et al 
investigated this retrospectively in prostate and brain cancer 
planning and demonstrated potential time savings, but further 
prospective studies are required.168 In the context of a technique 
like a posteriori MCO, how the clinician and planner role will 
evolve will likely vary between different countries. For example 
in the UK, the Clinical Oncologists are responsible for adminis-
tering both radiotherapy and other non-surgical treatments such 
as chemotherapy whereas in other countries there is a different 
approach with Radiation Oncologists who are more focused in 
radiotherapy. Therefore, the practicality of a posteriori MCO in 
the hands of clinicians in the UK will likely be different. One 
approach may be treatment planners taking on an extended role, 
or formalising an existing role, in the decision-making aided by 
the availability of other relevant clinical data and with the appro-
priate training and qualifications.

A limitation of current implementations of a posteriori MCO is 
that the plans optimised are near pareto optimal in the fluence 
space and do not directly consider the machine parameter opti-
misation. The final navigated plan is then converted into a deliv-
erable using direct aperture optimisation. However, McGarry et 
al and Kyroudi et al have shown that dosimetric discrepancies can 
occur between the conversion of the navigated plan into a deliv-
erable plan, and therefore may not reflect the clinical preferences 
that resulted in the choice of the navigated plan and this may 
increase the uncertainty in the plan navigation process.165,179 In 
most cases, this dosimetric difference may not translate to a clin-
ically significant difference, and the advantage in the ability for 
navigating the trade-offs was retained. However, for some cases 
where there are small targets on low-density tissues, the dosim-
etric difference can be significantly larger such that manual fine-
tuning is likely required.165

A priori MCO with Erasmus-iCycle for linacs was validated for 
head and neck cancer,162 prostate cancer,150,185 cervical cancer,174 
lung cancer,180 spinal metastases,175 and gastric cancer.151. By 
itself, Erasmus-iCycle had fully automated MCO for beam 
fluence optimization. For the generation of clinically deliverable 
plans, the system was used as a pre-optimizer for the commercial 
Monaco TPS (Elekta AB, Stockholm, Sweden), which generates 
a deliverable, segmented plan that mimics the pre-optimized 
Erasmus-iCycle dose distribution. In the first evaluation study 
(on head and neck cancer), this plan reconstruction in Monaco 
was performed by a planner.162 In all later studies, the recon-
struction in Monaco was fully automated, i.e. for each patient 
the Erasmus-iCycle dose distribution was used to automatically 
create a patient-specific Monaco planning template, which was 
then used by Monaco for automated generation of a deliverable 
VMAT or IMRT plan, mimicking the Erasmus-iCycle plan. In all 

validation studies, the automated Monaco plans were compared 
with manually generated Monaco plans. Manual fine-tuning of 
automatically generated plans was not performed. For all inves-
tigated treatment sites, there was a considerable reduction in 
hands-on planning time, which virtually reduced to zero with 
fully automated planning. For treatment of the prostate only or 
prostate with seminal vesicles, plan quality between automated 
and conventional plan generation was similar.185 For treatment 
of the prostate with seminal vesicles and elective nodal irradi-
ation and all other sites, the quality of the automatically gener-
ated plans was superior. In the prospective head and neck cancer 
study,162 treating clinicians could, for each patient, choose 
between an automatically and a conventionally generated plan. 
In 97% of cases, preference was given to the plan that was gener-
ated with Erasmus-iCycle. At the Erasmus MC Cancer Institute, 
fully automated planning with the combination Erasmus-iCycle/
Monaco was in routine use for prostate, cervix, lung, and head 
and neck cancer patients.

novel APPRoAches to using AutoMAted 
PlAnning AlgoRithMs
Automated planning as a plan quality assessment 
and checking tool
It was recognised in several studies that the principle of KBP can 
be used both as an automated planning tool and as a plan quality 
assessment tool. This is because the first component of KBP is 
to use prior knowledge to predict the achievable dosimetry for 
a prospective patient. This information can be used to judge the 
quality of a plan and has been shown to be effective by several 
groups.32,36,59,65,71,77,188,191 Additionally, it has also been reported 
to be a useful tool for training new staff members and improve 
the quality of manual planning, and also useful in clinical trial 
QA.61

“Bias-free” comparison of different treatment 
techniques using automated planning
Comparing different treatment techniques (e.g. VMAT and 
IMRT) in a treatment planning study can be prone to human 
subjectivity and bias, particularly there can be questions to what 
extent there were differences in the optimality of the plans for 
the compared techniques. An interesting approach is to use 
automated planning in these studies.163,166,173,181,192 Boylan 
and Rowbottom developed a PB-AIO approach and applied it 
in comparing seven fixed-field IMRT with two arc VMAT for 
nasopharyngeal head and neck cancer patients using a standard 
protocol, and to investigate two experimental strategies (a parot-
id-sparing strategy and dose escalation strategy).192 They showed 
that the IMRT and VMAT techniques were clinically comparable 
for the standard and dose escalation protocols, whereas VMAT 
was better in the parotid sparing strategy. Lechner et al, used 
MCO to objectively compare the quality of flattening filter free 
IMRT and VMAT vs flattening filter plans in prostate and head 
and neck cancer patients.163 Sharfo et al used automated plan-
ning for bias-free comparisons of IMRT and VMAT techniques 
for cervical cancer.181 They demonstrated that a 12 field IMRT 
technique had similar quality as a dual-arc VMAT technique. 
Sharfo et al also used bias-free automated planning for compar-
ison of liver SBRT with a fully non-coplanar technique, coplanar 
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VMAT, or a new approach called VMAT+.161 The latter was 
defined as VMAT supplemented with 1–5 computer-optimized 
non-coplanar beams. Regarding plan quality, they demonstrated 
that VMAT+ was superior to VMAT, and almost as good as fully 
non-coplanar. Treatment times with VMAT+ were much shorter 
than with fully non-coplanar treatment.

In prostate cancer (and other pelvic malignancies), one of the 
common challenges faced by treatment planners is the scenario 
where a patient has an artificial metallic hip implant. This pres-
ents a challenge to the planner as a typical technique is to avoid 
beams entering through the implant due to uncertainties in 
the density, which limits the permissible beam directions. The 
difficulty is amplified if the patient has bilateral implants. Voet 
et al, reported on using a priori MCO to automatically investi-
gate different fixed-field IMRT strategies using the iCycle soft-
ware which was able to optimise both beam angles and fluence 
profiles.173

Automated planning as a decision support tool for 
treatment selection and personalised treatment
Studies have reported on the use of automated planning as a useful 
tool for making informed decisions on a patient’s eligibility for 
specific novel radiotherapy techniques. The potential advantage 
of automated planning in this context is the quick production 
of plans for different techniques and clinical scenarios, where 
otherwise resource-intensive manual plan generations would be 
required.

One application of this is patient selection for proton therapy. 
Automated planning is used to select patients suitable for whom 
a proton treatment plan may be suitable and to promote that 
only patients that would clinically benefit from the treatment are 
selected and to thus avoid using this limited resource in patients 
where potentially a faster photon-based plan would be equally 
or more clinically useful. Delaney et al found that a KBP model 
based only on prior photon VMAT plans was able to predict 
proton DVHs and therefore, may be used in identifying patients 
for proton therapy.64 Bijman et al used MCO to generate photon 
and proton plans, and while the primary focus of their study was 
in the context of analyzing the uncertainty of using normal tissue 
complication probability models for patient selection, the use of 
MCO for fast plan generation was still demonstrated.193

In patients with liver tumours (such as from hepatocellular 
carcinoma or oligometastatic disease) and who are contraindi-
cated for surgical intervention, stereotactic ablative radiotherapy 
(SABR) is a promising treatment modality. However, there 
are some limiting factors and criteria which dictate whether 
a patient is eligible for SABR. The most significant of these is 
the dose to the healthy liver tissue, which will vary depending 
on the tumour volume and liver volume. In practice, the deci-
sion on eligibility can only be determined once the trial-and-
error planning has been attempted, which is an inefficient use 
of resources. Tran et al, reported on using KBP as a tool for 
predicting patient eligibility for liver SABR and to also determine 
whether the patient would benefit from a more complex non-co-
planar technique than a standard coplanar VMAT technique.24 

Rønde et al investigated the feasibility of using MCO for shared 
decision-making in anal cancer and conclude that patient–clini-
cian preference-informed plan selection is feasible.177 Smith et al 
described a novel approach to personalized treatment planning 
by integrating a model of radiotherapy outcome with MCO for 
prostate cancer treatment.170 The MCO model generates the set 
of pareto optimal plans which are then integrated into a Bayesian 
network to model the probabilities of outcomes such as toxicity, 
recurrence, distant metastasis. To predict these probabilities, the 
model uses information from expert opinion and published data, 
and patient characteristics such as clinical staging, Gleason score 
and PSA. The final step is use these probabilities in a Markov 
model then to predict Quality Adjusted Life Expectancy which 
is then the final basis for ranking and selecting the best plan. 
This approach appears to be promising; however, the authors 
point out that further work is required to validate the accuracy 
of the predictions of outcomes. A similar approach has also been 
reported for glioblastoma.139 Valdes et al describe an AI approach 
which identifies previously approved treatment plans which are 
achievable for a prospective patient to aid decision made on a 
personalized level.40

Automated planning for plan library in plan-of-the-
day (PotD) adaptive radiotherapy
Due to various challenges in modern radiotherapy, such as 
limitations in accuracy in automated image segmentation and 
automated planning speed, daily online replanning based on 
daily reimaging has not been routinely applied. A simpler, but 
more feasible approach is PotD ART, which has been reported 
for bladder cancer,194 cervical cancer195 and rectum cancer.196 In 
this approach, the patient is imaged daily and then treated with 
a plan selected from a pre-treatment established patient-specific 
plan library. The library contains plans for various patient anat-
omies. The PotD is the library plan that best fits with the anato-
my-of-the-day. PotD ART involves generation of multiple plans 
for each patient, increasing the planning workload for a depart-
ment. Heijkoop et al have avoided this problem by applying auto-
mated plan generation.195 For each cervical patient, they created 
a library with up to three plans.

discussion
Over the last few years, innovations in automated treatment 
planning software have led to the potential to improve the effi-
ciency and quality of radiotherapy treatment planning. The gain 
in plan quality and reduced interplanner variation may have clin-
ical benefit for patients by removing the low-quality outliers and 
therefore potentially cure more patients, however, these need to 
be demonstrated with clinical evidence.

There has been a rapid increase in the number of papers published 
in this field and there were a variety of approaches and commer-
cial implementations. In general, most papers in the literature 
showed improvements over manual planning across a variety of 
clinical sites. This review covered innovations in automated plan-
ning, but the patient’s treatment planning pathway also involves 
the contouring of ROIs and the quality assurance procedures to 
ensure safe delivery of plans. Automation of these areas is also 
being addressed but have not been covered in this review.197–204
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Real-time interactive planning is a new paradigm for IMRT 
planning that is not based on using traditional optimisation 
algorithms. Instead, the goal is to be able to give the treatment 
planner the ability to perform real-time and interactive manip-
ulation of the isodose or DVH lines and ultra-fast (automated) 
reoptimisation and dose estimation to update the user on the 
impact of interactive modifications. The main potential for this 
type of semi-automated planning is (along with advancements 
in imaging, auto-segmentation, and fast plan verification) to 
realise dose-guided, fast and intuitive adaptive replanning. This 
approach was still in the very early stages in the research domain, 
and as such there were limited proof-of-principle papers that 
were published,205–207 but it is anticipated that these systems 
may become commercially available within the next few years. 
Real-time interactive planning and other innovations in fast 
reoptimisation will play an essential role in the topic of on-table 
adaptation which was being made possible due to developments 
such as MR-radiotherapy machines.208,209 This is an area of 
active research, and some preliminary publications have been 
published, some of which use similar principles for automation 
of the plan reoptimisation as those discussed in this review.210–214 
These developments were also in parallel with necessary devel-
opments in automation of contouring and QA which are also 
central to this concept.

There were a few research areas that require further study, which 
we highlight here. Some studies suggested that cross-institu-
tional sharing of knowledge may improve the quality of the auto-
mated plan generation;66,68,76 however, further research on the 
impact of sharing of KBP models and a priori MCO wish-lists 
for more clinical sites was needed. Furthermore for KBP, the 
size and heterogeneity of the dataset required and the robust-
ness of the resulting model needs further investigation. An area 
of automation where there were limited papers is in IMPT, and 
future developments will be needed as the number of centres that 
will be treating with IMPT is gradually increasing.64,193,215 Also, 
automated plan generation including (non-coplanar) beam angle 
optimization (or beam arc optimization for VMAT) was only 
explored with “bias-free” comparisons in a limited number of 
studies, however showing promising results.163,166,173,181,192 The 
use of automated planning in randomised clinical trials offers 
the opportunity to reduce the level of variability of plan quality 
which may affect the clinical outcomes, and the reduced vari-
ability may also lead to the possibility of reducing the required 
sample sizes meaning trials could potentially recruit quicker. This 
use of automation may also facilitate randomised trials testing 
two extreme treatment techniques which may be manually chal-
lenging to achieve at the desired plan quality. A possible example 
of this could be comparing treatment with a maximum focus on 
sparing of OAR1 with another treatment that maximally spares 
the competing OAR2. The endpoint of such a study could be the 
patients’ Quality of Life. Therefore, the role of automated plan-
ning within clinical trials is an important area of future investi-
gations. Sharing of automated techniques between centres may 
lead to improved consistency between different centres (perhaps 
even worldwide), particularly in rare diseases where adequate 
patient numbers to develop expertise may only be possible across 
a handful of centres. However, a significant barrier was that the 

different types of automated planning implementations presents 
a challenge for sharing of different experiences between centres 
and commercial vendors. Furthermore, the equivalence between 
automated planning techniques was not well-known. Of poten-
tial interest is to investigate whether one automated planning 
technique could be ported to another. The role of automated 
planning for shared decision-making and personalised radio-
therapy has been briefly discussed in this review but this research 
was in the early stages and it is anticipated that further studies 
will follow. For this to become more feasible, plan quality should 
ideally be linked to patient outcome and not DVH-like metrics. 
Finally, guidelines and recommendations on how to perform 
planning studies, agreed by planning experts and endorsed by 
professional bodies, are also highly needed. Planning studies 
can have a focus on development and evaluation of novel strate-
gies/algorithms for automated planning, or automated planning 
may be used for investigating clinical questions, e.g. are protons 
better than photons. For both types of studies, statistical power 
and avoidance of bias (e.g. related to diversity in human planner 
experience) has to be considered. In the technical studies, clin-
ical deliverability of generated plans may not always have the 
highest urgency, whereas this seems a must when using planning 
for comparing different treatment strategies in a clinical setting. 
Other factors that have to be considered in guidelines are quality 
of dose calculation algorithms, adequate coping with geomet-
rical uncertainties (e.g. using margins, and appropriate metrics 
for comparing plans).

While there were some papers in the literature highlighting 
the technical feasibility of automated planning over manual 
planning, there were limited studies that describe the practi-
calities of implementing automated planning, including more 
detail on how the treatment planner’s role may evolve. One of 
the common elements that impact the successful adoption of 
any innovation is “interconnection” as described by Euchner,216 
where it is argued that “innovation happens when ideas collide”. 
This is true for automated planning techniques where there may 
be mixed viewpoints within a hospital organisation regarding 
its advantage and disadvantage amongst the multidisciplinary 
staff groups, which presents a challenge for the successful clin-
ical adoption. Is it an efficiency saving meaning potentially less 
dedicated staff are required and therefore, a mean for cost saving 
or is it an essential tool to be used by a finite staff resource? Is it 
an evolution in treatment planning requiring modified treatment 
planning skills or a route to deskilling staff? As such there are 
the “human factors” that need to be considered for implementing 
automated planning. There are known questions and challenges 
that need to be rationalised, such as: what will happen to the role 
of a treatment planner? Can one fully automate a plan and trust 
the software? Is it possible to automatically generate a plan for 
every patient? How does one ensure people retain their skills and 
is this even necessary? Is there a balanced approach to imple-
menting automated planning? For example, it may be best prac-
tice to prioritise implementing automated planning algorithms 
to handle the most routine cases that have a high workload 
(such as prostate cancer or breast cancer) to re-route expertise to 
focus more efforts on tackling complex cases (which may other-
wise be referred elsewhere) and be able to spend more time on 
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innovative new treatment techniques and research. Potentially, 
this could mean more difficult cases could be treated closer to a 
patient’s home, assuming adequate case numbers are available to 
maintain clinical expertise. Sharing of DVH prediction models 
(RapidPlan), Treatment Techniques (Pinnacle Auto-Planning) 
and wish-lists (Erasmus-iCycle) between centres may also 
address this issue, particularly in rare diseases where adequate 
patient numbers to develop a model may only be possible across 
several centres. Alternatively, should such techniques be initially 
focussed on those sites where significant time savings may be 
made? Experienced treatment planners, in particular, may not 
see the benefits in the use of more routine planning where time 
savings are modest. As such, it can be argued that there should 
always be a role for a multidisciplinary team consideration. 
There may be a clash of cultures amongst different staff groups 
concerning automated planning, and this may require addressing 
before the adoption of such techniques into clinical practice.

Furthermore, the actual benchmarking and validation of auto-
mated planning is not straightforward and requires expert physics 
resource, as highlighted in the literature it is not merely possible 
to use “out-of-the-box”.78 It is important to realize that all current 
implementations of automated planning require a high-level of 
manual planning knowledge for configuration. It is questionable 
that this will change in the coming years as no mathematical 
formulas exist for balancing trade-offs, and dose–response rela-
tionships have significant uncertainties. The impact of a subop-
timal configuration of an automated planning algorithm may be 
similar to an overall geometric error in the treatment prepara-
tion process: it will introduce an overall systematic error in the 
treatments, i.e. for all patients (of a particular tumour type), the 
plan quality is lower than feasible. Treatment planning can be a 
complicated process, and achieving the best radiotherapy treat-
ment with the optimal trade-offs between good tumour coverage 
and healthy tissue sparing requires expert knowledge; replicating 
this with automated software is a difficult achievement and there 
will often be scepticism that the software will do as good a job as 
a human, regardless of how good the published results are.

Guidance by professional bodies on implementation of auto-
mated planning and possible redefining of treatment planner 

roles could provide rationalisation. Algorithms for (semi-)auto-
mation of the configuration of automated planning software 
could also be highly beneficial in facilitating better implementa-
tion, and the development of simple metrics in plan comparison 
may facilitate this.

conclusion
Recent innovations in automated treatment planning software 
have given rise to the potential to broadly improve the efficiency 
of radiotherapy planning and to enhance the overall quality of 
generated treatment plans, which is expected to result in higher 
quality treatments. Automated planning can also facilitate better 
access to high-quality advanced treatments, and harmonize 
radiotherapy treatments between treatment centres. Automated 
planning is now available in different commercial packages, 
each with a different technical approach, and the initial clinical 
reports are promising. The field is currently still rapidly devel-
oping and in a steep upward trend, and there are various areas 
of future research required that have been highlighted in this 
review. Much work is still needed to explore practical issues 
related to clinical implementation, including staffing, and their 
changing roles. In a resource-limited world, disruptive innova-
tive technology is essential to meet future healthcare needs, and 
the rapid adoption of automated planning is one area that should 
be embraced and also possibly supported by professional body 
recommendations.
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Abstract
Purpose To investigate how nodule size, nodule density, scan dose, slice thickness and reconstruction methods affect the 
performance of a deep learning (DL) model for detection of pulmonary nodules in phantom CT scans.
Materials and methods Spherical lung nodule phantoms of two different densities (− 630 HU and + 100 HU) and five differ-
ent sizes (3, 5, 8, 10, and 12 mm) were inserted into an anthropomorphic chest phantom. CT data were scanned and recon-
structed using three different tube current (10, 50, 200 mAs), two different slice thickness of 1 and 2 mm, four reconstruction 
methods (FBP-standard (FBP-STD), FBP-Y sharp kernel (FBP-YA), iDose4-standard kernel (iDose4-STD) and iDose4-Y 
sharp kernel (iDose4-YA). Evaluation of deep learning model focused on detection sensitivity and precision.
Results According to the statistical results from the study, we found that the sensitivity and precision performance depends 
on the nodule sizes, nodule type, tube current, reconstruction methods and image thickness. Comparing the solid (100 HU) 
and ground-glass (GGO, − 630 HU) nodule phantoms, solid nodule phantom predictions are rarely affected by tube cur-
rent, reconstruction methods and nodule sizes. Both sensitivity and precision are close to 100% in all solid nodule phantom 
prediction cases. While the sensitivity and precision metrics of GGO nodule phantoms change in a wide range from 42.9 to 
100%. Larger nodule size and higher tube current gives a better sensitivity and precision for GGO nodule phantoms in most 
cases. We also analyze the relationships between the image thickness and the reconstruction methods. For 1-mm thickness 
images, iDose4-STD and FBP-STD shows a better result in both sensitivity and precision metrics. As for 2-mm thickness 
images, iDose-YA and FBP-YA gain a better performance.
Conclusion The results of this phantom study demonstrated that high stability and flexibility of deep learning model can be 
used in daily clinical and screening practice.

Keywords Lung nodule · Deep learning · Detectability · Computed tomography · Phantom

Introduction

The early identification of pulmonary nodules is an impor-
tant task for the management of lung cancer. However, read-
ing of CT images by radiologists for detecting the presence 
of pulmonary nodules is a tedious and time-consuming 
work. The increased clinical demand on radiologists and 
heavier workload have resulted in less time for interpretation 

of images together with high risk potential for more detec-
tion or interpretation errors to occur [1, 2]. Studies have 
reported that the double reading by radiologist showed a 
detection rate of 59.1% and a missed rate of 40.9% [3]. 
Missed lung cancers are an important diagnostic concern. 
Hence, computer-aided detection (CAD) of lung nodules 
would be valuable for lung cancer screening.

Although many traditional academic and commercial 
computer-aided detection (CAD) systems have been devel-
oped to improve the nodule detection rate [4–7], they are 
still not commonly used in our routine work. Based on 
conventional image-processing techniques, these algo-
rithms showed a wide range of sensitivity and high false-
positive rates (FPR), ranges from 73 to 96.7% with FP rates 
of 0.55–8.2 per scan on an average, and may not be robust 
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across various data sources [8]. Recently, deep learning has 
been widely used in many real fields, particularly it has been 
used for the detection and diagnosis of the lesions in medical 
images, improving the accuracy with efficiency. Deep learn-
ing (DL) allows computational models that are composed of 
a large number of hidden layers to learn representation of 
data with multiple levels of abstraction. Now more and more 
studies have explored their use for detection and diagnosis 
of pulmonary nodules [9–11].

Data are the core of data mining required by deep learn-
ing algorithm. It is impossible to obtain better results by 
only mastering algorithm and lacking data. However, imag-
ing data from clinical studies or lung cancer screening pro-
grams are usually varied by slice thickness, reconstruction 
algorithm and scan parameters, may have implications for 
the robustness of the DL model. In our previous clinical 
study, no significant dependence regarding radiation dose 
was observed, and the DL model showed elevated overall 

sensitivity compared with manual review of lung nodules 
[12]. For accurate analysis, images acquired with different 
parameters should be normalized to the same conditions. 
Employing the lung nodule phantom allowed us to scan the 
identical anatomical and lesion conditions repetitively at 
multiple settings from standard to ultra low dose, which is 
clearly not possible in patients. Therefore, we tried to use 
the diversified phantom data to investigate the influence of 
radiation dose settings, reconstruction algorithm and slice 
thickness on the performance of the DL model.

Materials and methods

Phantom and synthetic nodules

An anthropomorphic thoracic phantom (Lungman, Kyoto 
Kagaku, Tokyo, Japan) was used in this study. The phantom 

Fig. 1  Example of CT images reconstructed with FBP-STD methods at slice thickness of 1 mm
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has artificial thoracic wall, heart, mediastinum, diaphragm 
and pulmonary vessels. The simulated spherical nodules 
included five different sizes (3, 5, 8, 10, and 12 mm), two 
different densities: − 630 HU (ground-glass nodule), 100 HU 
(solid nodule). In each scan, The 10 synthetic nodules were 
randomly placed at different sites of the phantom, such as 
the lung apex, tracheal bifurcation, subpleural, attached to 
the vasculature and so on.

Scan protocols

All CT data were obtained with a 256-slice MDCT scan-
ner (Brilliance iCT, Philips Healthcare, Cleveland, OH, 
USA). The following data acquisition parameters were kept 

constant: detector configuration: 128 × 0.625 mm, beam 
pitch: 0.99; rotation time: 0.5 s; and FOV: 350 mm. The 
effective tube current time products (mAs) were 10, 50, and 
200 mAs (Fig. 1). Thin-section CT images at all tube cur-
rents were reconstructed as a contiguous section thickness of 
1 mm and 2 mm with the FBP-standard (FBP-STD), FBP-Y 
sharp kernel (FBP-YA), iDose4-standard kernel (iDose4-
STD) and iDose4-Y sharp kernel (iDose4-YA). iDose4 
(Philips Healthcare) was one of the iterative reconstruction 
algorithms. At each tube current, the chest phantoms were 
scanned 3 times. Thus, yielding a total of 72 datasets.

Fig. 2  Flowchart of image analysis and nodule prediction
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Data analysis

Aitrox (Shanghai, China) provided software and hardware 
support. The authors who were not affiliated with Aitrox had 
control of data and information submitted for publication.

As shown in Fig. 2, we analyzed the CT images and do 
nodule prediction by four main stages: preprocess, detection, 
classification and postprocess. CT images are the input of 
the whole prediction process. Before predicted, they first 
go through the preprocess stage to reduce the unrelated 
region in further process so as to promote the computation 
efficiency. Specifically, we used watershed and morpho-
logical analysis to extract the lung regions in CT images. 
After segmenting the lung region through thresholding, the 
intact lung region mask was generated, while the unrelated 
objects were removed by size and location analysis. Then the 
masked image will be normalized between zero to one and 
its spacings will be uniformed to one.

The second stage is the detection stage. To extract pos-
sible pulmonary nodule from the lung region and ensure 
high sensitivity, we developed a nodule detector with the 
framework of RPN (Region Proposal Network), where using 
U-net, a commonly used network in medical image segmen-
tation, as its backbone. Different from classic U-net [13], 
we use dilated convolution layers as well as self-designed 
block which combine dense block and residual block. This 
progress may generate more various features which can 
provide more choices for optimizing the model behavior. 
With the encoder–decoder workflow of U-net, the features 
of nodule are enhanced. After obtaining the feature map by 
U-net, RPN is presented to achieve the precise location and 
the probability of each objects. In our implementation, the 
RPN generated 3 potential objects with different window 
size as input and computed classification score for each 
object proposals during bounding box regression. After that, 

Table 1  Detection sensitivity of the nodule phantoms in slice thickness of 1 mm

Reconstruction method Size Density

− 630 HU 100 HU

Tube current Tube current

10 mAs (%) 50 mAs (%) 200 mAs (%) 10 mAs (%) 50 mAs (%) 200 mAs (%)

iDose4-STD 3 mm 58.3 75.0 71.4 95.8 100.0 100.0
5 mm 73.9 78.3 78.3 100.0 100.0 100.0
8 mm 90.9 85.0 81.8 95.8 100.0 100.0
10 mm 100.0 95.8 95.0 100.0 100.0 100.0
12 mm 100.0 100.0 100.0 100.0 100.0 100.0

iDose4-YA 3 mm 50.0 46.7 84.6 95.2 100.0 100.0
5 mm 77.3 81.8 82.6 100.0 100.0 100.0
8 mm 81.8 86.4 85.7 95.7 100.0 100.0
10 mm 100.0 95.5 96.0 100.0 95.2 100.0
12 mm 100.0 100.0 100.0 100.0 100.0 100.0

FBP-STD 3 mm 55.6 56.2 90.9 100.0 100.0 100.0
5 mm 77.3 72.7 78.3 100.0 100.0 100.0
8 mm 91.3 86.4 85.0 100.0 100.0 100.0
10 mm 90.0 92.0 91.7 100.0 100.0 100.0
12 mm 100.0 95.5 100.0 100.0 100.0 100.0

FBP-YA 3 mm 42.9 57.1 66.7 100.0 100.0 100.0
5 mm 88.2 82.6 90.9 100.0 100.0 100.0
8 mm 94.4 90.5 85.7 100.0 100.0 100.0
10 mm 77.8 95.5 95.5 100.0 95.5 100.0
12 mm 100.0 100.0 100.0 100.0 100.0 100.0
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the precise centroid was computed by weighting the location 
and probability of cluster of bounding boxes.

Since the detection results still contain false-positive pre-
diction, we added a classification stage after the detection to 
eliminate them. In the classification stage, we implemented 
a WRN (Wide Residual Network) based on a classical struc-
ture—ResNet [14], where residual learning allows deeper 
network to classify whether each patch contains a nodule. 
However, as the model goes deeper, the model will encoun-
ter overfitting problem even though residual block is applied. 
As the result, we put the inception module into the residual 
block and Global Average Pooling is also applied in sub-
stitute for Fully Connected Layer. We use these techniques 

to reach the balance between width and depth of deep net-
works. After the classification stage, most of the false-pos-
itive nodules can be removed by filtering low-probability 
patches.

The final stage is the postprocess stage which is to cal-
culate the features of predicted nodules. For each nodule 
candidate, we form another classification model to predict 
its density. Then, the nodule is segmented along is edge by 
watershed and region grow algorithms. Finally, we apply 
morphological method to the segmentation result to calcu-
late the nodule’s maximum and minimum diameter.

Fig. 3  The sensitivity change according to tumor size change with section thickness of 1 mm and the fitted linear of each case were plotted
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We get the final output from the postprocess stage. The 
output is a list of predicted nodules in the CT image, and 
each nodule contains information of its position, probability 
of being a nodule, diameter, density and its segmentation 
results.

The models mentioned above were trained based on real 
patients’ CT data from hospitals. We randomly crop a patch 
from processed image, whose size is 128*128*128 and 
with at least a nodule in it. Then, we use a data generator to 
send the patch into the training process which will give the 
coordinates(X, Y, Z) and size as well as the probability of 
all potential nodules. Then, based on the label (coordinates 
and size of true nodules), we get the difference between our 
predictions and labels, and use back propagation techniques 
which is mainly an optimizer to get the update of weights to 
lower the difference. With thousands of iterations, the deep 
network learned to imitate the observations of doctors’ and 
achieve good metrics of the test set.

To give the detection metrics, we refer to the rule of LUNA 
competition to determine whether the prediction matches the 
annotation. The hit criterium is that, a predicted nodule should 
be in the range of the radius of the annotated nodule center. 
If hit, the predicted nodule is considered to be a true positive 
(TP). Predicted nodules that do not hit any annotated nodule 
are considered false positives (FP), and annotated nodules not 
matched to any predicted nodule are counted as false negatives 
(FN). We further calculate the sensitive and precision based on 
TP, FP, and FN using the two equations below:

Sensitive = TP∕(TP + FN),

Preicision = TP∕(TP + FP).

Table 2  Detection sensitivity of the nodule phantoms in slice thickness of 2 mm

Reconstruction model Size Density

− 630 HU 100 HU

Tube current Tube current

10 mAs (%) 50 mAs (%) 200 mAs (%) 10 mAs (%) 50 mAs (%) 200 mAs (%)

iDose4-STD 3 mm 42.90 75.00 66.70 86.40 100.00 100.00
5 mm 73.90 82.60 79.20 100.00 100.00 100.00
8 mm 83.30 86.40 78.30 96.00 100.00 100.00
10 mm 86.40 92.30 100.00 96.00 100.00 96.00
12 mm 100.00 100.00 100.00 100.00 100.00 100.00

iDose4-YA 3 mm 63.60 72.70 86.70 95.50 100.00 100.00
5 mm 72.70 80.00 73.90 100.00 100.00 100.00
8 mm 87.00 83.30 87.50 95.50 100.00 100.00
10 mm 82.60 91.30 91.30 96.20 100.00 100.00
12 mm 100.00 100.00 100.00 100.00 100.00 100.00

FBP-STD 3 mm 42.90 70.00 75.00 90.90 100.00 100.00
5 mm 73.90 82.60 78.30 100.00 100.00 100.00
8 mm 82.60 82.60 84.00 95.70 100.00 100.00
10 mm 91.30 90.50 100.00 96.30 100.00 96.00
12 mm 100.00 100.00 100.00 100.00 100.00 100.00

FBP-YA 3 mm 62.50 81.80 66.70 89.50 100.00 100.00
5 mm 86.40 77.30 77.30 100.00 100.00 100.00
8 mm 85.70 83.30 87.00 100.00 95.50 100.00
10 mm 87.00 86.40 100.00 100.00 100.00 100.00
12 mm 100.00 100.00 100.00 100.00 100.00 100.00
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Results

The sensitivity performance of nodule phantom for images 
with thickness of 1 mm is shown in Table 1 and Fig. 3. 
For all − 630 HU nodule phantoms, the sensitivity ranges 
from 42.9 to 100.0% in different nodule sizes, reconstruc-
tion methods and mAs values. For small GGO nodule 
phantoms of − 630 HU and 3 mm, best sensitivity per-
formances for 10 mAs, 50 mAs, 200 mAs are 58.3% with 
iDose4-STD, 75.0% with iDose4-STD, and 90.9% with 

FBP-STD, respectively. As for 100 HU nodule phantoms, 
we got sensitivity ranging from 95.2 to 100.0%. FBP-STD 
gains the best average sensitivity performance among all 
four reconstruction methods for solid nodule phantoms 
with all sizes and mAs values. 

Table 2 and Fig. 4 show the sensitivity performance for 
images with thickness of 2 mm. The sensitivity of − 630 
HU nodule phantoms still ranges from 42.9 to 100.0% 
with a larger thickness, but the best sensitivity results 
for small 3 mm GGO phantoms are obtained by different 
reconstruction methods. We got 63.6% for 10 mAs with 

Fig. 4  The sensitivity change according to tumor size with section thickness of 2 mm, change together with the fitted line of each case
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iDose4-YA, 81.8% for 50 mAs with FBP-YA, and 86.7% 
for 200 mAs with iDose4-YA. In 2-mm CT images, the 
sensitivity of 100 HU nodule phantoms goes a bit lower 
than 1 mm images, which ranges from 86.4 to 100.0%. 
Reconstruction method of iDose4-YA gains the best aver-
age sensitivity results.

In addition to the sensitivity, we also calculated the sta-
tistical data for precision performance. Table 3 and Fig. 5 
give the precision for images with thickness of 1 mm. For all 
− 630 HU nodule phantoms, the precision ranges from 42.9 
to 100.0%. Best small 3 mm GGO nodule phantoms’ preci-
sion result for 10 mAs is 55.6% with FBP-STD, for 50 mAs 
is 66.7% with iDose4-STD, and for 200 mAs is 84.6% 
with iDose4-YA. Precision of 100 HU nodule phantoms, 

the precision is from 95.5 to 100.0%. FBP-YA gets the best 
average precision performance in overall mAs values and 
solid nodule sizes.

Precision performance for images with thickness of 
2 mm is demonstrated in Table 4 and Fig. 6. For − 630 
phantom nodules, the precision ranges from 42.9% to 100% 
which is the same as images with 1-mm thickness. Among 
small 3 mm GGO nodule phantoms, we got highest preci-
sion 50.0% for 10 mAs with FBP-YA, 81.8% for 50 mAs 
still with FBP-YA, and 66.7% for 200  mAs with both 
iDose4-YA and FBP-STD. As for solid nodule phantoms 
with 100 HU, the precision ranges from 90.9 to 100.0%. 
FBP-YA gains the best average precision among all recon-
struction methods.

Table 3  Detection precision of the nodule phantoms in section thickness of 1 mm

Reconstruction method Size Density

− 630 HU 100 HU

Tube current Tube current

10 mAs (%) 50 mAs (%) 200 mAs (%) 10 mAs (%) 50 mAs (%) 200 mAs (%)

iDose4-STD 3 mm 50.0 66.7 71.4 91.7 100.0 100.0
5 mm 69.6 73.9 73.9 100.0 100.0 100.0
8 mm 86.4 85.0 81.8 87.5 90.5 91.3
10 mm 83.3 87.5 85.0 100.0 100.0 100.0
12 mm 100.0 100.0 100.0 95.2 100.0 100.0

iDose4-YA 3 mm 50.0 46.7 84.6 95.2 100.0 100.0
5 mm 77.3 72.7 82.6 100.0 100.0 100.0
8 mm 81.8 86.4 85.7 95.7 91.3 95.7
10 mm 85.0 81.8 88.0 94.7 95.2 100.0
12 mm 100.0 100.0 100.0 100.0 100.0 100.0

FBP-STD 3 mm 55.6 56.2 81.8 95.5 100.0 100.0
5 mm 72.7 72.7 73.9 100.0 100.0 100.0
8 mm 87.0 86.4 85.0 87.0 91.3 90.9
10 mm 80.0 84.0 83.3 100.0 100.0 100.0
12 mm 100.0 95.5 100.0 95.2 100.0 100.0

FBP-YA 3 mm 42.9 50.0 66.7 100.0 100.0 100.0
5 mm 88.2 78.3 81.8 100.0 100.0 100.0
8 mm 94.4 90.5 81.0 100.0 90.9 95.5
10 mm 77.8 81.8 86.4 100.0 95.5 100.0
12 mm 100.0 100.0 100.0 100.0 100.0 100.0
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Discussion

Previous studies have demonstrated that several factors, such 
as tube current, detector collimation, beam pitch, slice thick-
ness, reconstruction kernels as well as iterative reconstruc-
tion algorithms will affect nodule detection by radiologists 
[15, 16], these scan parameters can affect the image quality 
or noise. High spatial frequency reconstruction algorithms 
are good for showing fine structures within lung tissue. 
The use of this kernel will result in high image noise, also 
provides a peripheral edge enhancement effect [17]. In this 
study, we compared two different kernels combined with 
iterative reconstruction algorithm (iDose) or not: one with 
higher image noise, and the other with lower image noise.

Wielpütz et al. employed an ex vivo lung phantom and 
prepared with 162 artificial nodules (20 ± 20HU) of a clini-
cally relevant volume and maximum diameter (46–1063 µl, 
and 6.2–21.5 mm), showed that the sensitivity of a commer-
cially available CAD system on low-dose MDCT scans with 
a CTDI between 0.25 and 8.07 mGy is 88.9–91.4% for FBP 
and 88.3–90.1% for IR [18]. Our results also showed that 
decreasing tube current had no effect on the detection sen-
sitivity and precision of 100 HU phantom nodules, even for 
small one. DL model is robust over a wide range of exposure 
settings for solid nodule. However, we found that the change 
of tube current can affect the performance of deep learn-
ing model for the small size of − 630 HU nodule phantom. 
An increase in the image noise may impair the detection 

Fig. 5  Detection precision of the nodule phantoms at slice thickness of 1 mm
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of ground glass opacity (GGO) nodules at the minimal 
tube current second product (10 mAs). The difference of 
CT images between lung nodules and lung parenchyma is 
relatively small and the increase in image noise at the level 
of minimal tube current may affect the detection rate. Our 
study also indicates that DL model’s performance at 2 mm 
is comparable with that at 1 mm.

Importantly, iterative reconstruction (IR) algorithm is not 
detrimental to DL model’s sensitivity and accuracy, appears 
that IR can be applied alongside DL model for the compre-
hensive management of low-dose CT screening.

A conventional CAD framework used for nodule detec-
tion requires several steps including organ of interest seg-
mentation, lesion candidate detection, feature extraction, 
selection, and integration via image processing and pattern 
recognition [19]. In such a pipeline, every step depends 
heavily and easily on the performance of the previous step. 
Besides, because medical image combined of many non-
linear transformations always has high complexity, the per-
formance of conventional CAD scheme is affected seriously 
by volume effect, intensity inhomogeneities, artifacts, and 
the similarity of intensity in different soft tissues. However, 

deep learning architectures, which can capture more abstract 
information, are an effective method to avoid some above 
problems in the conventional CAD scheme. Unlike tradi-
tional studies, deep learning architectures have the advan-
tage of automatic exploitation feature by multi-scale convo-
lution regardless of the limitation of the feature extraction 
method, and tuning of performance in a seamless fashion. 
In this study, we proposed a CAD system with deep learning 
framework. The empirical results of our studies indicate the 
deep learning method performs well on nodule detection. 
Otherwise, as a classification model of supervised learn-
ing, deep learning presented here shows detection of high 
stability and flexibility in various conditions including dif-
ferent X-ray tube current, reconstruction method, phantoms 
diameters, and densities. Moreover, deep learning has the 
capability to combine information from various medical 
image types for further diagnosis and analysis.

Our study has several limitations. First, we adopted a 
commercially available chest CT phantom which included 
several perfectly round simulated GGOs and solid nodules, 
their frequency was quite different from that observed in 
our daily clinical work. Real pulmonary nodules also have 

Table 4  Detection precision of the nodule phantoms in section thickness of 2 mm

Reconstruction model Size Density

− 630 HU 100 HU

Tube current Tube current

10 mAs (%) 50 mAs (%) 200 mAs (%) 10 mAs (%) 50 mAs (%) 200 mAs (%)

iDose4-STD 3 mm 42.90 58.30 58.30 90.90 100.00 100.00
5 mm 73.90 73.90 75.00 100.00 100.00 100.00
8 mm 83.30 95.50 78.30 88.00 86.40 90.90
10 mm 86.40 84.60 87.00 96.00 100.00 96.00
12 mm 100.00 100.00 100.00 100.00 100.00 100.00

iDose4-YA 3 mm 45.50 72.70 66.70 95.50 100.00 100.00
5 mm 72.70 72.00 82.60 100.00 100.00 100.00
8 mm 87.00 87.50 87.50 90.90 91.30 91.70
10 mm 82.60 87.00 91.30 96.20 100.00 100.00
12 mm 100.00 100.00 100.00 100.00 100.00 100.00

FBP-STD 3 mm 42.90 70.00 66.70 90.90 100.00 100.00
5 mm 73.90 73.90 73.90 100.00 100.00 100.00
8 mm 82.60 87.00 84.00 87.00 86.40 90.90
10 mm 87.00 85.70 87.00 96.30 100.00 96.00
12 mm 100.00 100.00 100.00 100.00 100.00 100.00

FBP-YA 3 mm 50.00 81.80 58.30 94.70 100.00 100.00
5 mm 77.30 72.70 81.80 100.00 100.00 100.00
8 mm 85.70 91.70 82.60 95.70 90.90 95.70
10 mm 87.00 86.40 90.50 95.70 96.30 100.00
12 mm 100.00 100.00 100.00 100.00 100.00 100.00
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several factors affect their detection including shape, mar-
gin and density. Second, only several scan and reconstruc-
tion parameters were evaluated in this study. Another limi-
tation is the relative small sample size of nodules in our 
study, and this made us refrain from analyzing even smaller 
subdivisions.

Conclusion

This chest phantom study demonstrated that the change of 
tube current can affect the performance of deep learning 
model for the small size of ground glass opacity nodule 
phantom, whereas for phantom density of 100 HU, deep 
learning presented here shows detection of high stability 
and flexibility in various conditions including different tube 

current and reconstruction methods. Going forward, this 
makes deep learning model appropriate to be used in daily 
clinical and screening practice, provide evidence for future 
studies with real patients.
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inTroDuCTion
Osteoporosis is an important yet underdiagnosed and 
undertreated bone disease whose direct and indirect 
costs are estimated to substantially increase in the coming 
decades.1–4 As such, efforts to increase osteoporosis 
screening and treatment are important for reducing the 
impending global public health burden of fragility frac-
tures. Dual-energy X-ray absorptiometry (DXA) is the most 
widely used screening tool for low bone mineral density 
(BMD), but its planar nature precludes direct trabecular 
assessment of the spine. An additional opportunity for 
osteoporosis screening exists using bone data obtained 
from body CT scans, which are frequently performed in 

older adults for a wide variety of indications.5–10 In partic-
ular, manual CT-based L1 trabecular attenuation measure-
ments have been shown to correlate with DXA-based BMD 
categories, is predictive of future fragility fractures, and 
this level is imaged on both thoracic and abdominal CT 
scans.11,12

Advances in radiology image processing have the poten-
tial to provide fully automated measurements of CT-based 
images that are more objective than manual human 
measures, and can be applied to larger patient cohorts.13–15 
In this study, we implemented an image-processing algo-
rithm that performs automatic volumetric segmentation of 
the lumbar trabecular space on CT scans and then estimates 
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objective: To validate a fully automated CT-based spinal 
trabecular bone mineral density (BMD) tool and apply it 
to a longitudinal screening cohort.
Methods: The automated BMD tool was retrospectively 
applied to non-contrast abdominal CT scans in 1603 
consecutive asymptomatic adults (mean age, 55.9 years; 
770 M/833 F) undergoing longitudinal screening (mean 
interval, 5.7 years; range, 1.0–12.3 years). The spinal 
column was automatically segmented, with standard-
ized L1 and L2 anterior trabecular ROI placement. Auto-
mated and manual L1 HU values were compared, as were 
automated supine-prone measures. L1-L2 CT attenu-
ation values were converted to BMD values through a 
linear regression model. BMD values and changes were 
assessed according to age and gender.
results: Success rate of the automated BMD tool was 
99.8 % (four failed cases). Both automated supine vs 
prone and manual vs automated L1 attenuation meas-
urements showed good agreement. Overall mean annual 
rate of bone loss was greater in females than males 
(–2.0% vs −1.0%), but the age-specific rate declined 

faster in females from age 50 (–2.1%) to age 65 (–0.3%) 
compared with males (–0.9% to −0.5%). Mean BMD was 
higher in females than males at age 50 (143.6 vs 135.1  mg 
cm–3), but post-menopausal bone loss in females 
reversed this relationship beyond age 60. By age 70, 
mean BMD in females and males was 100.8 and 107.7  mg 
cm–3 , respectively.
Conclusion: This robust, fully automated CT BMD tool 
allows for both individualized and population-based 
assessment. Mean BMD was lower in men than women 
aged 50–60, but accelerated post-menopausal 
bone loss in women resulted in lower values beyond  
age 60.
advances in knowledge: This fully automated tool can 
be applied to routine abdominal CT scans for prospec-
tive or retrospective opportunistic BMD assessment, 
including change over time. Mean BMD was lower in men 
compared with women aged 50–60 years, but acceler-
ated bone loss in women during this early post-meno-
pausal period resulted in lower BMD values for women 
beyond age 60.

https://doi.org/10.1259/bjr.20180726
mailto:ppickhardt2@uwhealth.org
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BMD. Utilizing a large, unique CT-based adult screening cohort 
undergoing longitudinal colonography assessment,16 we sought 
to validate this BMD tool, including both measurement fidelity 
and objective population-based assessment according to age and 
gender over time.

MeThoDS anD MaTerialS
Patient population
This was a HIPAA-compliant retrospective cohort study 
performed at a single academic medical center. The need for 
patient consent was waived by the IRB. Asymptomatic, generally 
healthy outpatient adults aged 50–70 years at the time of their 
initial screening CT colonography (CTC) study, and who had at 
least two CTC studies over time at the University of Wisconsin 
between January 2004 and March 2017, were eligible for inclu-
sion. For patients with more than one follow-up CTC, the initial 
and last scans were utilized for primary analysis. Patients whose 
scans were performed less than 1 year apart were excluded as 
relevant decreases in BMD would be less likely over such a short 
follow-up period. A total of 1607 patients were initially eligible 
for inclusion. We also searched the electronic medical records 
of included patients for evidence of osteoporosis screening with 
central DXA (spine and/or hips), either before or after their 
initial CT examination used in this study.

Age at initial CT, length of time between CT studies, and gender 
were collected as exposure variables. After excluding four failed 
cases, the final cohort consisted of 1603 adults (833 females and 
770 males), with a mean age at initial CT of 55.9 ± 5.0 years. 
The mean interval to follow-up CT was 5.7 ± 1.9 years (range, 
1.0–12.3 years). Outcome variables were the automated CT-de-
rived L1 trabecular attenuation values [in Hounsfield units 
(HU)] and the calculated BMD values, which were based on the 
average trabecular HU at L1 and L2.

CT image acquisition
Per standard CTC screening technique,17,18 breath-hold supine 
and prone acquisitions were performed without i.v. contrast 
on a variety of 8–64 channel multidetector CT scanners (GE 
Healthcare, Waukesha, WI). These CT scanners undergo daily 
QA, including HU calibration testing. Scan parameters included  
1.25 mm collimation and slice thickness, 120 kV, variable 
low-dose mAs settings, and 1 mm reconstruction interval. The 
1.25 mm supine series was utilized for primary BMD analysis, 
include rate of change over time; prone series BMD measure-
ments were also obtained for intra patient comparison.

Automated trabecular spine segmentation and 
BMD estimation
A fully automated method was developed to segment the trabec-
ular spine from CT images, which was developed and tested on a 
separate patient cohort.19 The CT images were sent offline from 
PACS for anonymization prior to accessing the BMD tool. The 
algorithm first extracts the spinal column based on thresholding, 
region growing, watershed, and directed graph search. Second, 
the segmented spinal column is then partitioned into indi-
vidual vertebrae using curved planar reformation and dynamic 
programming. For each vertebral body, the cortical bone was 
automatically eroded to isolate the trabecular space.

An oval region of interest (ROI) was automatically placed in the 
middle transverse (axial) cross-sections of extracted L1 and L2 
vertebrae (Figure 1). The location of the ROI was set at the ante-
rior one-third of the anteroposterior center axis of the vertebral 
body, to simulate the established manual method.11,20,21 The size 
of the ROI was standardized at one-half of the vertebral body 
lateral width by one-fourth of the vertebral body anteroposte-
rior height, using a single slice at the vertebral midline. Mean 
HU values were calculated within the ROIs for L1 and L2 and 
converted to BMD estimation through a linear regression model 
trained by a set of QCT images with calibration phantoms.

Figure 1. Automated CT BMD tool in asymptomatic 59-year-old male at initial evaluation, evaluated over a 10-year interval. (A) 
3D volume-rendered image from the initial CT scan performed in 2007 when the patient was 59 years old shows the relative 
placement of the automated ROI (green cylinder) within the anterior trabecular space of the L1 vertebral body. (B) Collage of 2D 
transverse images at the L1 level from CT in 2007 (top row) and 2017 (bottom row). Bone windows (left images) and soft tissue 
windows (middle images) are shown, as well as placement of the automated ROI (green ovals) with resulting mean HU values 
(right images). The HU values correspond to an estimated BMD of 186.9 mg cm–3 in 2006 and 131.6 mg cm–3 in 2016, reflecting a 
30% loss, or annual mean rate of BMD change of −3%/year. Note also the significant interval weight loss. 3D, three-dimensional; 
BMD, bone mineral density; ROI, region of interest.

http://birpublications.org/bjr
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To estimate BMD from HU, we used a previously derived cali-
bration curve obtained from phantoms used in dedicated QCT 
scans, which demonstrated excellent correlation (r2 = 0.98).19 
The curve maps CT attenuation in HUs to BMD in milligrams 
per milliliter.

Comparison of manual and automated trabecular 
attenuation values
To further assess the automated L1 HU measurement, we 
compared manual L1 attenuation measurements in a random 
subset of 588 patients, using a previously validated method, with 
placement of a single ROI in the anterior L1 trabecular space, 
just off the mid-vertebral level.8,11,21

Statistical analysis
Annual rate of change in BMD was assessed in overall and 
percentage-based terms. The rate of annual BMD change was 
estimated by calculating the difference between initial and 
follow-up BMD and dividing it by the scan interval in years 
(Figure 1). The full patient range at initial CT (50–70 years) was 
utilized for age-specific BMD values; age-specific rates of BMD 
loss were considered for the 50–65 year-old range, as there were 
insufficient data points for rates of change beyond 65 years.

Intrapatient comparison between automated L1 HU values on 
the supine and prone CT series were compared as an internal 
quality assurance measure in a subset of 2851 CT scans. For 
all other purposes, BMD values for the supine CT series were 
utilized. Multivariate linear regression was performed to esti-
mate the effects of age and gender on annual change in BMD 
and to model expected annual change in BMD. Interaction of the 
effects of age and gender on outcome variables were included in 
the regression analyses. Bland-Altman analysis was utilized for 
comparing manual and automated L1 attenuation measurement, 
and for comparing automated supine and prone BMD measure-
ments. In addition, the square of the Pearson correlation coeffi-
cient (r2, the correlation of determination) was derived for these 

comparisons. All statistical analyses were performed using R 
software (R Core Development Team, v3.3.2).

reSulTS
QA performance of the BMD algorithm
The automated BMD tool successfully derived an L1 HU and 
BMD value in 99.8% (1603/1607) of cases. There was good 
agreement (r2 = 0.90) between the automated supine and prone 
BMD measurements (Figure 2), with a mean difference of −0.15 
mg cm–3, without bias. Bland–Altman 95% limits of agreement 
were −21.7 to 21.4 mg cm–3. In the subset of 588 patients, supine 
manual and automated L1 attenuation measurements also showed 
good linear agreement (Figure 3; r2 = 0.80). The Bland–Altman 
95% limits of agreement for the attenuation difference were 
−32.8 to 22.4 HU. Automated L1 attenuation measurements were 
slightly increased relative to manual measurements by 5.2 HU on 
average, without bias.

BMD change over time at CT
Overall results for the entire cohort, not stratified by age, are 
shown on Table 1. The overall mean annual change in BMD was 
−2.0% per year in females and −1.0% per year in males (−1.5% per 
year for the entire cohort). However, a deeper understanding is 
gained when the results are stratified by age and gender (Table 2). 
As expected, mean BMD decreased with increasing age from 50 
to 70 years for both males and females (Figure 4). Mean BMD in 
females was higher than males at 50 years of age (143.6 vs 135.1 
mgcm-3), but accelerated post-menopausal bone loss in females 
reversed this relationship beyond 60 years of age. However, 
the rate of bone loss progressively declined more rapidly with 
increasing age in females compared with males (Figure  5). By 
65 years of age, the mean rate of annual bone loss was slightly 
greater in males compared with females (−0.5%/year vs −0.3%/
year). By 70 years of age, mean BMD in females and males was 
100.8 and 107.7 mg cm–3, respectively. Age at initial CT, sex, 
and their interaction term were all significantly associated (p < 
0.001) with mean BMD at initial CT, annual mean rate of change 

Figure 2. Automated supine vs prone measurements (A), Plot of automated BMD measurement of the supine vs prone CT series 
(r2 = 0.90) (B), Corresponding Bland–Altman plot with 95% limits of agreement. No bias is noted. BMD, bone mineral density.
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in BMD, and annual percent change in BMD at multiple linear 
regression modeling.

Clinical osteoporosis screening with DXA
A total of 377 patients underwent DXA for osteoporosis 
screening prior to their initial CT screening study, corresponding 
to 23.5% (377/1603) of the cohort. Another 17.3% (278/1603) of 
patients underwent DXA study after the date of the initial CT 
study. Nearly 90% of patients screened with DXA were females. 
To date, 59.1% (948/1603) of patients from this study have not 
been screened by DXA.

DiSCuSSion
In this study, we determined annual age- and gender-specific 
rates of trabecular spine BMD change in an adult screening 
cohort using fully automated CT-based software. We found that 
annual rates of BMD loss peaked in females ages 50–55 years, 
corresponding to the early post-menopausal period (mean age 
of menopause in females is 51 years). This is in agreement with 
prior DXA22 and qCT23–25 data that demonstrated acceler-
ated bone loss in females during late perimenopause and early 
post-menopause. Prior to this accelerated post-menopausal 
BMD loss in females, we found that age-matched males actually 

Figure 3. Manual vs automated L1 trabecular attenuation measurements in 588 subjects. (A) Plot of manual single-slice ROI and 
automated volumetric measurements for L1 trabecular attenuation (in HU). (r2 = 0.80). (B) Corresponding Bland–Altman plot with 
95% limits of agreement. Note that the automated measures are approximately 5 HU higher on average, without bias according 
to variation of the mean. HU, Hounsfield unit; ROI, region of interest.

Table 1. Characteristics for overall patient cohort

Female Male All

N= 833 770 1603
Age at initial CT (years) Mean (SD) 56.0 (5.0) 55.8 (5.0) 55.9 (5.0)

CT Interval (years) Mean (SD) 5.8 (1.8) 5.7 (1.9) 5.7 (1.9)

L1 Attenuation at Initial CT (HU) Mean (SD) 177.4 (40.8) 171.1 (39.5) 174.3 (40.3)

BMD at Initial CT (mg cm–3)

Mean (SD) 130.7 (30.5) 127.5 (28.5) 129.1 (29.6)

Min 55.4 54.3 54.3

Max 253.9 253.1 253.9

BMD at follow-up CT (mg cm–3)

Mean (SD) 119.1 (29.0) 121.6 (28.7) 120.3 (28.8)

Min 39.5 58.1 39.5

Max 237.22 244.8 244.8

Change in BMD (mg cm–3) Mean (SD) −11.6 (17.2) −5.6 (12.5) −8.7 (15.5)

% Annual Change in BMD Mean −2.0% −1.0% −1.5%

BMD, bone mineral density; HU, Hounsfield Unit; SD, standard deviation.

http://birpublications.org/bjr
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have lower lumbar trabecular BMD than females, on average. 
Although not widely appreciated, this lower BMD level in males 
has been previously shown for adults in the third decade of life.26 
We also found that rates of BMD loss progressively slowed after 
menopause in females, which is also in accordance with previ-
ously published results. In combination, these data stress the 
potential importance and possible preventive opportunity for 
this accelerated BMD loss seen in the early post-menopausal 
period in females. Because these changes occur before the age 
of recommended osteoporosis screening, other interventions 
might be considered.

Perhaps more important than redemonstrating normative 
BMD levels and rates of BMD loss according to age and gender 
is the fact that all our CT-based measurements were obtained 
automatically without reader input. This robust automated 
tool, representing an improvement over an earlier version,19 
demonstrated a very low failure rate, and correlated well with 

the manual L1 trabecular ROI measurements. Manual L1 HU 
measures have been previously validated for clinical important 
outcomes,6,8,11,12,20 and are now being used every day in our 
routine clinical practice to provide opportunistic BMD informa-
tion. Use of an automated tool could greatly expand utilization 
of this opportunistic screening approach, and enhance the value 
of our CT interpretations. In addition, this tool could be applied 
retrospectively within a group or practice to provide popula-
tion-based screening. As we have shown, there is a substantial 
subset of patients who may otherwise not be screened by DXA, 
and opportunistic screening with CT could therefore have a 
meaningful impact. Although one could argue that many of 
these patients were not yet of the recommended age for osteopo-
rosis screening, many osteoporotic fractures occur prior to initial 
DXA screening. Furthermore, the majority of patients under-
going DXA who have a fragility fracture will have a non-oste-
oporotic T-score (i.e. greater than −1.0),11 which may relate in 
part to the planar nature of DXA. As a volumetric cross-sectional 
imaging technique, CT is able to directly assess the trabecular 
bone without the issues of overlying cortical bone and degener-
ative changes.

Table 2. Mean BMD values and rates of change according to gender and age

Age at initial CT Sex Mean BMD (mg cm–3) Mean rate of annual change in 
BMD (mg cm–3/year)

% Rate of annual change in 
BMD

50 Female 143.6 (140.6, 146.5) −3.1 (-3.4, –2.8) −2.1% (–2.3, –1.9)

55 Female 132.9 (130.9, 134.8) −2.2 (-2.4, –2.0) −1.5% (–1.5, –1.7)

60 Female 122.2 (119.8, 124.6) −1.3 (-1.6, –1.1) −0.9% (–1.1, –0.8)

65 Female 111.5 (107.7, 115.4) −0.4 (-0.8, –0.1) −0.3% (–0.7, –0.09)

70 Female 100.8 (95.3, 106.4) – –

50 Male 135.1 (132.1, 138.1) −1.2 (-1.5, –0.9) −0.9% (–1.1, –0.6)

55 Male 128.3 (126.3, 130.3) −1.0 (-1.2, –0.8) −0.8% (–0.2, –0.6)

60 Male 121.4 (118.9, 124.0) −0.8 (–1.0, –0.5) −0.6% (-0.8, –0.4)

65 Male 114.6 (110.5, 118.7) −0.6 (–1.0, –0.2) −0.5% (–0.8, –0.2)

70 Male 107.7 (101.8, 113.6) – –

BMD, bone mineral density.

Figure 4. Automated mean BMD values at initial CT according 
to age and gender. Plots using lines of best fit show that males 
have lower BMD values on average in the 50–60 age range, 
whereas females have lower values on average at older ages. 
The shaded areas around lines correspond to the 95% CIs for 
the mean BMD values. BMD, bone mineral density.

Figure 5. Annual rates of BMD change according to age at 
initial CT and gender. BMD, bone mineral density.

http://birpublications.org/bjr
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In general, rapid advances in artificial intelligence and machine 
learning applied to cross-sectional imaging could eventually lead 
to fully automated measurements that provide objective assess-
ment to complement a radiologist’s interpretation.13–15 Beyond 
this BMD tool, we are currently investigating a number of 
abdominal CT-based machine learning algorithms to automat-
ically measure abdominal aortic calcification, hepatic attenua-
tion, muscle mass for sarcopenia, and visceral and subcutaneous 
fat. While potentially providing useful information in isolation, 
the combination of these tools could conceivably synergize to 
provide meaningful cardiometabolic risk assessment and stratifi-
cation. In addition, a companion machine learning algorithm for 
automatically detecting vertebral compression fractures was not 
applied in this study but could be used in concert with automated 
BMD assessment.27

One strength of our study design was the relatively unique longi-
tudinal CT series in an asymptomatic screening cohort, which 
was ideal for applying this automated tool to assess for age- and 
gender-based differences in BMD values and rates of BMD loss. 
In addition, CT has intrinsic advantages over the clinical stan-
dard of DXA, which is a planar technique that cannot directly 
assess the spinal trabecular space. However, we also acknowl-
edge limitations of the current study. The small but measurable 
increased offset in automated L1 attenuation over 5 HU over the 
manual technique likely relates to placement of the automated 
ROI in the central aspect of the anterior trabecular space, where 
a stripe of increased linear density can be seen on sagittal CT 
reconstructions and at gross anatomy.28 In addition, one would 
expect some offset in HU measurements between supine and 
prone measurements given the known effects related to posi-
tional changes within the scanner.29 The phantomless tech-
nique with calibration on one scanner in a limited data set could 
potentially lead to inaccuracies or variability in the conversions 
from HU to mg/cc. However, HU values are calibrated as part of 
daily quality control, and a recent study found that phantomless 

BMD results based on HU values represent good estimates 
across different scanners.30 We did not investigate the impact 
of other risk factors, such as those included in the FRAX tool,31 
nor did we search for prevalent or incident factures, all of which 
would require a detailed patient-by-patient search. We plan to 
investigate the predictive ability of this automated BMD tool by 
applying it to a large retrospective cohort both with and without 
future fragility fractures.

In conclusion, this fully automated BMD tool can be applied 
opportunistically to routine abdominal CT scans for prospective 
clinical or retrospective population-based assessments, including 
monitoring changes over time.

Numbers in parentheses represent 95% confidence intervals. 
Accelerated bone loss in the early post-menopausal period in 
females leads to overall lower BMD values beyond age 60. Note, 
however, that the rate of BMD loss progressively decreases faster 
in females than in males, resulting a lower rate of BMD loss by 
age 65. Data for rates of change beyond age 65 were too sparse 
for accurate reporting.

Plots using lines of best fit show that females demonstrate accel-
erated bone loss over the post-menopausal 50–60 year age range, 
but that this rate of loss progressively declines faster than males. 
Shaded areas around lines correspond to 95% CIs for the mean 
annual rate of BMD change.
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Abstract
Purpose To investigate the value of radiomics in predicting lymphovascular invasion (LVI) status of rectal cancer based 
on MRI.
Materials and methods The retrospective study included 188 patients based on MRI with histologically confirmed rectal 
cancer and evaluated LVI status. Clinical factors and image data were collected, and radiomics features were extracted from 
multi-region (tumor and mesorectum) and single region (tumor), respectively, on T2WI and DWI. Spearman correlation 
analysis and the LASSO algorithm were used for radiomic feature extraction and selection; preliminarily selection of an 
optimal classifier by the results of the fivefold cross-validation performance in the six preselected specific machine learning 
classifier. Multi-regional and single-regional predictive models were both built and evaluated by calculating the area under 
the ROC curve (AUC) and corresponding accuracy, specificity, sensitivity, etc.
Results A Ridge Classification model was constructed with 21 features (2 clinical features, 10 radiomics features from 
mesorectum region, and 9 radiomics features from tumor region) selected by Spearman correlation and LASSO analysis. The 
multi-regional model shows a good performance in the differentiation of the status of LVI in training data sets (AUC = 0.87, 
accuracy = 0.79). The model was further validated in the testing data sets, giving an AUC and an accuracy of 0.74 and 0.68, 
respectively. Furthermore, the performance of single-regional model (AUC = 0.72, accuracy = 0.67) is lower compared to 
the values given by the multi-regional model.
Conclusion The radiomics model which we developed demonstrates that multi-regional radiomics features based on mul-
tiparametric MRI are useful for preoperatively predicting lymphovascular invasion in patients with rectal cancer.

Keywords Rectal cancer · Machine learning · Radiomics · Lymphovascular · MRI

Abbreviations
AUC   Area under the ROC curve
EMVI  Extramural venous invasion
LASSO  Least absolute shrinkage and selection operator
LVI  Lymphovascular invasion
MRF  Mesorectal fascia
ROC  Receiver-operating characteristic

Introduction

Colorectal cancer (CRC) is the third most common malig-
nant tumor in the world [1, 2], and about one-third to 44% 
of CRC are occurred in the rectum [3]. The National Com-
prehensive Cancer Network (NCCN) Guidelines consider 
lymphovascular invasion (LVI), which is defined as the pres-
ence of tumor cells in the lymphatic vessels or blood vessels 
or both, as a significant negative factor in treatment options 
and prognostication in rectal cancer [4, 5]. Several investiga-
tions have revealed that patients with LVI may associate with 
lymph-node metastasis and benefit from adjuvant systemic 
therapy [6–9]. Hence, it becomes increasingly important to 
evaluate LVI status preoperatively, so that patients with LVI 
might benefit from radical surgery and adjuvant treatments 
[4, 6, 10, 11].

Currently, the LVI status is evaluated by histopathology 
after resection, which provides no accuracy preoperative 
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evaluation to a treatment option. The biopsy may provide 
the LVI status before surgery; however, the limited speci-
men fails to provide the information of the whole tumor [12, 
13]. In addition to histopathology, rectal magnetic resonance 
imaging (MRI) is also an important means in tumor evalu-
ation, which is noninvasively [3, 4, 14]. Previous studies on 
rectal MRI have demonstrated that the diagnostic perfor-
mance of extramural venous invasion (EMVI) by MRI was 
good [15, 16]. However, the intramural blood vessels and 
lymphatic vessel invasion status, which are parts of the LVI, 
are failed to evaluate by MRI [17, 18]. Therefore, is there 
a way to accurately evaluate the LVI status in rectal cancer 
before treatment?

Radiomics is an emerging method for extracting quanti-
tative features from medical imaging and assisting clinical 
decision to improve diagnostic, prognostic, and predictive 
accuracy [13, 19–21]. The central hypothesis that drives the 
development of radiomics is based on the tumor microen-
vironment description, which helps to assess the biological 
characteristics of the tumor [12, 19]. Rectal MRI is essential 
for pre- and post-treatment assessment of rectal cancer, as it 
provides anatomic structures and their relationship with the 
tumor with a high-spatial resolution [22, 23]. Rectal MRI-
based radiomics have been used for treatment response [24], 
lymph-node metastasis [25], and prognostic evaluation [26]. 
However, MRI-based radiomics for LVI prediction remains 
underinvestigated in rectal cancer.

Therefore, the aim of this study was to develop a radiom-
ics model for prediction of lymphovascular invasion in rectal 
cancer based on MRI.

Materials and methods

Patients

This study was approved by the ethics committee of The 
First Hospital of Jilin University, and the informed con-
sent requirement was waived. We retrospectively evaluated 
patients with rectal cancer in our hospital between January 
2016 and December 2018. Inclusion criteria were as fol-
lows (a) histologically confirmed rectal adenocarcinoma; (b) 
rectal MRI were performed before surgery within 2 weeks; 
(c) LVI were assessed by histopathology after resection. 
The exclusion criteria included a history of (a) preoperative 
chemoradiotherapy (CRT), radiotherapy, chemotherapy, or 
distant metastases, considering that the preoperative treat-
ment maybe changed the LVI status; (b) poor MRI qual-
ity; (c) lack of clinic information, such as pretreatment 
carcinoembryonic antigen (CEA) and carbohydrate antigen 
19-9(CA19-9). Finally, we enrolled a total of 188 patients, 
80 LVI +, and 108 LVI −. We randomly divide patients into 
training and testing cohorts in a 2:1 ratio.

Clinicopathologic data, including age, gender, the level 
of carcinoembryonic antigen (CEA), and carbohydrate 
antigen19-9 (CA 19-9), were derived from medical records. 
Laboratory analysis of CEA and CA19-9 was tested within 
1 week before surgery. The threshold value for the CEA level 
was ≤ 5 ng/mL and >5 ng/mL, and the threshold value for 
the CA19-9 level was ≤ 39U/mL and >39U/mL, according 
to the normal range used in clinics.

Measurement of conventional radiology evaluation 
indicators: including the location of primary tumor, lesion 
involvement length, tumor thickness (measured on oblique 
axis T2WI), extramural depth of invasion (measured on 
oblique axis T2WI), mesorectal fascia (MRF, > 1 mm diag-
nostic negative, ≤ 1 mm positive), and maximum lymph-
node short diameter (measured on-axis T2WI).

The data enrolled flowchart of the study is shown in 
Fig. 1.

MRI data acquisition

The enrolled rectal MRIs were all performed on the same 
MR scanner (3.0T, Philips Ingenia, The Netherlands). 
And glycerine enema was required for rectal cleansing 
before scanning. To reduce abdomen motility, 20 mg of 
anisodamine was injected intramuscularly 30 min before 
MRI scanning. All patients underwent a rectal MRI pro-
tocol including sagittal, axial, oblique axial, and coronal 
T2-weighted images and DWI. High-resolution T2WI 
images were obtained using turbo spin-echo with a rep-
etition time (TR) = 3500 ms, echo time (TE) = 100 ms, 
the field of view (FOV)  =  180 × 180  mm, echo train 
length  = 29, matrix = 288 × 256, thickness = 3.0 mm, and 
gap = 0.3 mm. DWI images were obtained with 2 b fac-
tors (0 and 1000 s/mm2), and TR = 2800 ms, TE = 70 ms, 
FOV  =  340 × 340  mm, matrix  =  256 × 256, thick-
ness = 4.0 mm, and gap = 1.0 mm. All MRI images were 
retrieved from the picture archiving and communication 
system (PACS) for tumor masking and radiomic feature 
extraction.

Tumor masking

Two radiologists (Dr. Fu and Dr. Liu with 8 and 3 years of 
experience in rectal cancer radiology diagnosis, respec-
tively) who blinded to the histopathology results seg-
mented the volumes of interest (VOIs) on high-spatial-
resolution T2WI and DWI via IntelliSpace Discovery 
(Philips, Best, The Netherlands). The volumes of interest 
(VOIs) were defined as follows: (a) the volumes of the 
whole primary tumor and excluding the intestinal lumen, 
which was manually drawn on each slice based on T2WI 
(slightly high signal) and DWI (high signal, b value of 
1000 s/mm2), which were drawn along the contour of the 
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tumor; (b) the volume of the mesorectal region on unfat 
suppressed T2WI, which was between the MRF (the thin-
low-signal intensity surrounding the mesorectum) and the 
outer edge of the tumor and rectal wall. The schematic 
diagram of the tumor and mesorectal region segmentation 
is shown in Fig. 2.

Radiomic feature extraction and selection

We have used three VOIs in radiomic feature calculation. 
The radiomic feature was analyzed by Philips Radiomics 
Tool (Philips Healthcare, China, the core feature calcula-
tion is based on pyRadiomics [27]). The extracted features 
are shown in Table 1.

First, at the feature normalization step, we used the 
Min–Max scaling algorithm (Eq. 1):

Next, a Spearman correlation analysis of radiomic feature 
and the label were done. Features with the coefficient lower 
than absolute value 0.2 or the p value greater than 0.05 were 
removed accordingly because of the low correlation between 
these radiomic features and pathological labels.

(1)X
normal

=

X − X
min

X
max

− X
min

.

Finally, at the dimensionality reduction step, least abso-
lute shrinkage and selection operator (LASSO) algorithm 
[28] were used.

Radiomic model construction and evaluation

At the model construction and evaluation step, six linear 
classification algorithms were investigated, including Pas-
sive Aggressive Classifier, Perceptron, Ridge Classifier, 
SGD Classifier, Logistic Regression, and Linear Support 
Vector Classifier for training and prediction. First, in the 
model training stage, we used fivefold cross validation to 
evaluate the performance of six specific machine learning 
classifiers in the training cohort with ‘accuracy’ as the opti-
mization metric, preliminarily selected the prediction model 
with the best prediction performance, and then evaluated the 
model in the training and test cohorts with the area under the 
ROC curve (AUC), etc.

Statistical analysis

All statistical analyses were performed using SPSS 24.0 
(IBM Corp). Chi-square test was used to compare the 
differences in categorical variables (gender, the loca-
tion of primary tumor, the level of CEA and CA19-9, 
and MRF status), while an independent sample t test or 

Fig. 1  Flowchart showing the numbers of the included and excluded patients in the study
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Mann–Whitney U test, as appropriate, was used to com-
pare the differences in continues variables (age, lesion 
involvement length, tumor thickness, and extramural 
depth of invasion).

Receiver-operating characteristic (ROC) curves were gen-
erated to assess the diagnostic performance of the radiomic 
models in predicting LVI status by calculating the area under 

the ROC curve (AUC) and corresponding accuracy, specific-
ity, sensitivity, and so on were calculated.

The reported statistical significance levels are all two-
sided, with the statistical significance set at 0.05.

Fig. 2  Segmentation result of tumor and mesorectum on T2WI and DWI in an LVI-positive patient. Images in a 51-year-old male, LVI-positive 
rectal cancer. a–c VOIs of primary tumor on T2WI; d–f VOIs of primary tumor on DWI; g–i VOIs of mesorectum on T2WI

Table 1  Extracted features by Philips Radiomics software using pyRadiomics

Indexes Introduction Feature number

Direct features Including first-order statistics features, shape-based features, gray-level co-occurrence 
matrix features, gray-level size zone matrix features, gray-level run-length matrix 
features, neighbouring gray tone difference matrix features, and gray-level depend-
ence matrix features

105

Indirect features Calculated based on direct features, through the algorithm of square, square root, 
logarithm, and exponential

368

Wavelet transform features Information about the frequency of similar SIs and describes the wavelet transform of 
the pixels in the ROI

720

Laplacian of Gaussian filtered features Description of texture based on the images filtered by Laplacian of Gaussian 460
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Results

Clinical characteristics

In total, 188 patients were identified and comprise the 
study cohort: 128 males (68%) and 60 females (32%), 
the age ranged from 24 to 89 years, with an average of 
59.61 ± 11.75 years old. The demographic statistics char-
acteristics of patients in the training and testing cohorts 
are shown in Table 1. As is shown in Table 2, there were 
significant statistical differences in gender and maximum 
lymph-node short diameter in the training cohort between 
the LVI positive and negative groups (P < 0.05).

No significant differences in LVI prevalence were found 
between the two cohorts (P = 0.952). Overall, 42.4% and 

42.9% of cases were LVI positive in the training and test-
ing cohorts, respectively.

Radiomic feature extraction and selection

For each VOI, a total of 1653 three-dimensional (3D)-based 
radiomic features were extracted. These radiomic features 
quantified tumor characteristics using tumor size and shape, 
intensity statistics, and texture. For each patient, we inte-
grated all of the 4959 radiomic features from three VOIs 
together.

We extracted radiomic features from multi-region 
(tumor and mesorectum) and single region (tumor), 
respectively, to investigate whether multi-regional radi-
omic model could improve the predictive performance 
in LVI. After the Spearman correlation analysis and 
LASSO algorithm, 21 radiomic features were retained for 

Table 2  Characteristic of patients in the training and testing cohort

The threshold value for CEA level was 5 ng/mL and > 5 ng/mL, and the threshold value for CA 19-9 level was 39 U/mL and > 39 U/mL, accord-
ing to the normal range used in clinics
LVI − lymphovascular invasion negative, LVI + lymphovascular invasion positive, CEA carcinoembryonic antigen, MRF mesorectal fascia, CA19-
9 carbohydrate antigen 19-9
*P value < 0.05
a Chi-square test, data are number of patients, with percentages in parentheses
b Independent sample t test, data are mean ± SD
c Mann–Whitney U test, data are median, with interquartile range in parentheses

Characteristics Training cohort Testing cohort

LVI (+)
n = 53

LVI (−)
n = 72

P LVI (+)
n = 27

LVI (−)
n = 36

P

Gender, no. (%) 0.429a 0.184a

 Male 34 (64.2) 51 (70.8) 16 (59.3) 27 (75.0)
 Female 19 (35.8) 21 (29.2) 11 (40.7) 9 (25.0)

Age, years 57.0 (51.0, 62.5) 61.5 (52.2, 69.8) 0.036c* 62.8 ± 10.5 59.4 ± 11.7 0.239b

The location of the tumor, no. (%) 0.154a 0.089a

 Upper 3 (5.7) 2 (2.8) 5 (18.5) 1 (2.8)
 Middle 31 (58.5) 32 (44.4) 10 (37.0) 19 (52.8)
 Lower 19 (35.8) 38 (52.8) 12 (44.4) 16 (44.4)

The tumor involved length (CM) 5.2 ± 1.7 5.1 ± 2.1 0.770b 5.3 ± 2.7 4.9 ± 2.1 0.568b

Tumor thickness (CM) 1.4 (1.1, 1.7) 1.3 (1.1, 1.6) 0.661c 1.2 ± 0.4 1.3 ± 0.5 0.377b

Extramural depth of invasion (MM) 5.0 (3.0, 8.0) 4.0 (1.0, 8.0) 0.260c 4.0 (3.0,7.0) 4.5 (2.5,8.0) 0.650c

Maximum lymph node short diameter (MM) 6.0 (5.0, 9.0) 5.0 (3.0, 6.0) < 0.001c* 5.9 ± 2.8 4.6 ± 3.0 0.091b

CEA level, no (%) 0.382a 0.787a

 Normal 29 (54.7) 45 (62.5) 21 (77.8) 29 (80.6)
 Abnormal 24 (45.3) 27 (37.5) 6 (22.2) 7 (19.4)

CA19-9 level, no (%) 0.081a 0.572a

 Normal 43 (81.1) 66 (91.7) 25 (92.6) 35 (97.2)
 Abnormal 10 (18.9) 6 (8.3) 2 (7.4) 1 (2.8)

MRF, no. (%) 0.139a 0.578a

 Normal 30 (56.6) 50 (69.4) 21 (77.8) 30 (83.3)
 Abnormal 23 (43.4) 22 (30.6) 6 (22.2) 6 (16.7)
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constructing the multi-regional radiomic model, includ-
ing 2 clinical features (the location of primary tumor and 
maximum lymph-node short diameter), 10 radiomic fea-
tures from mesorectum region, and 9 radiomic features 
from tumor region. In single-regional radiomic models, 
10 radiomic features were retained (Table 3).

Radiomic model construction and evaluation

We constructed multi-regional and single-regional radiomic 
models, and then compared their predictive performance. In 
the model training stage, we use the results of fivefold cross 
validation as the performance of a specific machine learning 
classifier. Ridge Classifier used in the feature extraction of 

Table 3  Feature coefficients of trained model

Feature name Coefficient

With mesorectum Without mesorectum

Location − 0.550270779 − 0.650599274
Maximum lymph-node short diameter (mm) 0.810826003 0.913718234
mesorectum-T2WI-ExponentialGLCM-exponential-Imc2 − 0.407578931 Non-available
mesorectum-T2WI-ExponentialGLDM-exponential-LargeDependenceLowGrayLevelEmphasis 0.537410184 Non-available
mesorectum -T2WI-LogarithmGLSZM-logarithm-GrayLevelNonUniformityNormalized 0.854873667 Non-available
mesorectum -T2WI-LogarithmGLSZM-logarithm-SizeZoneNonUniformityNormalized 1.169559029 Non-available
mesorectum -T2WI-ShapeBased-Flatness 0.344792771 Non-available
mesorectum -T2WI-SquareFirstOrder-square-Minimum − 0.5321271 Non-available
mesorectum -T2WI-SquareGLCM-square-Imc2 − 0.095079393 Non-available
mesorectum -T2WI-SquareRootGLCM-squareroot-ClusterShade − 0.81680237 Non-available
mesorectum -T2WI-WaveletFirstOrder-wavelet-HLH-Median 0.688704501 Non-available
mesorectum -T2WI-WaveletNGTDM-wavelet-LHL-Strength − 0.394190462 Non-available
tumor-DWI-WaveletGLCM-wavelet-HLL-MCC − 0.662314866 − 1.055273156
tumor-T2WI-ShapeBased-SphericalDisproportion 0.187089993 0.297837686
tumor-T2WI-WaveletFirstOrder-wavelet-HLL-Mean 0.688141186 0.941876692
tumor-T2WI-WaveletFirstOrder-wavelet-HLL-Median 0.54697935 0.828889871
tumor-T2WI-WaveletFirstOrder-wavelet-HLL-Minimum − 0.370569768 − 0.801286924
tumor-T2WI-WaveletFirstOrder-wavelet-LLH-Kurtosis 0.420803299 0.649334246
tumor-T2WI-WaveletGLCM-wavelet-HHH-Correlation 0.687261356 1.013091721
tumor-T2WI-WaveletGLCM-wavelet-HLL-Idn 0.257655009 Non-available
tumor-T2WI-WaveletGLRLM-wavelet-HLL-ShortRunHighGrayLevelEmphasis 0.465780302 0.336917221
Intercept − 1.484964 − 1.190307866

Fig. 3  Accuracy ranking from six models from multi-region (a) and single region (b) trained by different classifiers on fivefold cross-validation 
data set
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multi-region and linear SVC used in the feature extraction of 
single region were found to produce the most accurate model 
on fivefold cross-validation data set, respectively (Fig. 3). In 
this linear models, the coefficients of each radiomic features 
are shown in Table 4.

As is shown in Fig. 4, in the predictive multi-regional 
radiomic model, the mean AUC of the ROC curves of five-
fold validation is 0.82; the AUC of training data sets and 
testing data sets is 0.87 and 0.74, respectively. In the predic-
tive single-regional radiomic model, the mean AUC of the 
ROC curves of fivefold validation is 0.79; the AUC of train-
ing data sets and testing data sets is 0.81 and 0.72, respec-
tively. For more performance index, please see Table 4.

The AUC, accuracy, F1, sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV) 
of the multi-regional model is better than that of the single-
regional model, except PPV in testing data sets.

Discussion

This retrospective study investigated a radiomic model 
based on MRI for the preoperative prediction of LVI status 
in patients with rectal cancer. We constructed and compared 
the single and multi-regional radiomic models for discrimi-
nate LVI invasion of rectal cancer patients. Our results sug-
gest that MRI radiomic signature is significantly correlated 
with LVI. The multi-regional radiomic model was performed 
better than that of the single-regional model in preoperative 
prediction of LVI, with acceptable accuracy.

LVI is regarded as an important negative factor in treat-
ment options and prognostication in rectal cancer from 
multiple statistically published trials. The previous study 
which was reported by Liu et al. found that the DCE-MRI-
based radiomic features and LVI status were correlated in 
breast cancer, and indicated that the radiomic features were 

effective in predicting the LVI status of patients with inva-
sive breast cancer before surgery [29]. However, it is still a 
challenge for LVI preoperative prediction in rectal cancer. 
In the clinic, rectal MRI was suggested to reflect EMVI in 
rectal cancer, which is only one part of LVI [15–18]. Kim 
Y et al., who have investigated the visually assessed fea-
tures, considered that the LVI presents when the mesorec-
tal perivascular infiltrative signal was visible on pelvic MR 
imaging, and the sensitivity of MR-reported LVI status was 
68.2% [30]. While the radiomic model in our study showed a 
better predictive performance than MRI-reported LVI status 
by Kim. The better performance in our research might be 
due to that the radiomic features which was derived from 
multi-regional VOIs in multiparametric MR images could 
provide comprehensive information on LVI status, including 
intramural, extramural blood vessels, and lymphatic vessels 
in rectal cancer.

Previous studies showed multi-regional MRI radiomics 
allowing for a more comprehensive characterization of the 
tumor heterogeneity. This may offer potential to improve the 
prediction performance [31, 32]. LVI, which is defined as 
the presence of tumor cells in the lymphatic vessels or blood 
vessels or both, include intramural, extramural blood vessels, 
and lymphatic vessels. In addition to the region of the tumor, 
the surrounding mesorectal tissues may also exhibit abnor-
mal microscopic changes in the microvascular and lymphatic 
networks, extracellular matrix, and interstitial pressure, 
which cannot be ignored [33, 34]. Hence, we investigated 
whether multi-regional radiomics, including both tumor and 
mesorectum, could provide more features to discriminate 
LVI positive from LVI-negative lesions. When the current 
multi-regional radiomics signature was introduced into the 
prediction model, the performance improved than that of 
the single-regional model [34]. This suggests that the multi-
regional radiomic signature could enhance the prediction 
of LVI in rectal cancer patients. In addition, our study used 

Table 4  Performance of multi- 
and single-regional radiomic 
models on fivefold cross 
validation, training, and testing 
data sets

PPV positive predictive value, NPV negative predictive value, FPR false-positive rate, FNR false-negative 
rate, FDR false discovery rate

Models Fivefold cross validation Training data sets Testing data sets

Multi-region Single region Multi-region Single region Multi-region Single region

AUC 0.82 0.79 0.87 0.81 0.74 0.72
Accuracy 0.78 0.74 0.79 0.76 0.68 0.67
F1 0.73 0.69 0.82 0.80 0.70 0.70
Sensitivity 0.72 0.68 0.83 0.81 0.77 0.73
Specificity 0.82 0.79 0.75 0.70 0.61 0.60
PPV 0.75 0.71 0.81 0.76 0.64 0.67
NPV 0.80 0.77 0.77 0.76 0.74 0.67
FPR 0.18 0.21 0.26 0.30 0.39 0.40
FNR 0.28 0.32 0.17 0.19 0.23 0.27
FDR 0.25 0.29 0.19 0.24 0.36 0.33
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a 3 D VOI radiomic features by segmenting the tumor and 
mesorectum layer-by-layer. The 3D features provided more 
comprehensive information about lesions and improved the 
prediction accuracy of radiomic analysis compared with 2D 
features. Previous studies have shown that the 3D VOI pro-
vided more information about the heterogeneity of the whole 
lesion than the 2D region of interest (ROI) [35, 36].

How to select a modeling method is important for the 
performance of the radiomic model. Hence, a variety of 
machine learning methods should be used and the imple-
mentation should be fully documented [13], and then com-
pare the performance of different algorithms. In our study, 
Ridge Classifier used in the features extraction of multi-
region and linear SVC used in the feature extraction of single 

region were found to produce the most accurate model on 
fivefold cross-validation data set, respectively, can predict 
the LVI and maybe assist clinical decision-making.

There are some limitations to this study. First, the sample 
was divided into training and testing cohorts, but lacked of 
external testing validation. It likely led to overfitting. And all 
the enrolled MRIs were performed on the same MR scanner, 
which may also reduce the robustness of the prediction mod-
els. In the future, the study cohort should mixed different 
MRI scanners’ data sets to enhance robustness. Moreover, 
a multicenter study with a larger sample size and external 
validation is warranted. Second, the study did not evaluate 
T1 W and enhanced MR images, and only the VOIs of T2WI 
and DWI were calculated. However, in clinic, the T2WI and 

Fig. 4  ROC curves of radiomic models: a ROC of multi-regional 
model in fivefold cross validation; b ROCs of multi-regional model 
in training and testing data sets; c ROC of single-regional model in 

fivefold cross validation; d ROCs of single-regional model in training 
and testing data sets
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DWI play vital role in tumor evaluation, which have a proven 
high diagnostic accuracy [23, 37]. Third, LVI status was 
only classified as positive or negative in this study. LVI sta-
tus was further categorized into four grades based on the 
number of lymphovascular structures invaded, according to 
Jass classification (expanding vs infiltrative) [17, 18]. Fur-
ther study should investigate the relationship between radi-
omic feature scores with grades of LVI. Finally, this research 
was a retrospective study. Therefore, there is an inevitable 
selectivity bias. In the future, we will design a prospective 
study of radiomic data related to rectal cancer.

In conclusion, the radiomic model which we developed 
demonstrates that multi-regional and multiparametric radi-
omic features based on MRI are useful tools for preopera-
tively predicting lymphovascular invasion in patients with 
rectal cancer.
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Machine learning is a topic of major interest in several 
areas of medicine. With a history of success in non-med-
ical image analysis problems, it promises disruptive and 
transformative change in radiology.1 In particular, it has 
been developed for computer-aided diagnosis and detec-
tion applications, and for data processing tasks such as 
automated tumour volume measurements. However, de-
spite the media attention and impressive results generated 
in the lab, where, for instance, machines have been shown 
to outperform radiologists in specific disease recognition 
tasks,2 uptake in the clinic remains vanishingly small. In 
the following sections, we highlight some of the substantial 
challenges of clinical translation which we believe have so 
far blocked progression towards widespread adoption, but 
which are rarely discussed in the literature. We argue that 
without substantial resources being focused on these issues, 
machine learning will continue to see limited application in 
clinical radiology.

rEprESEnTaTivE DaTa anD EviDEncE
In order to make an informed decision on whether to 
invest in machine learning technology, representative clin-
ical performance results are required. However, such data 
are often severely lacking. Firstly, algorithm development 
and testing is frequently carried out on limited datasets, 
which may not be representative of the clinic and may not 

be associated with adequate “gold-standard” diagnoses. 
Many researchers use publically available data sets, such as 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
databases ( www. adni. loni. usc. edu). However, these data 
sets are often acquired under research rather than clin-
ical protocols, using legacy equipment. Thus, there may 
be substantial uncertainties on the likely performance for 
clinical data. For example, in the case of ADNI consider 
the CAD Dementia challenge. Participants were invited to 
create a classification algorithm based on only very limited 
training data (n = 30). All but 2 of the 29 submitted clas-
sification algorithms used ADNI data to supplement the 
training data. However, in almost every case the estimated 
algorithm accuracy from training data was lower than that 
on previously unseen test data3

Furthermore, machine learning algorithms are rarely 
tested in the environment for which they were notion-
ally designed. Standalone performance results are usually 
generated in a controlled setting with no human interac-
tion. However, results derived from machine learning tools 
will at some point need to be interpreted by clinicians. This 
is particularly pertinent for assistive reporting software, 
which is designed to directly influence the radiologists’ 
final decision. Without evidence of impact on the whole 
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Machine learning promises much in the field of radiology, both in terms of software that can directly analyse patient 
data and algorithms that can automatically perform other processes in the reporting pipeline. However, clinical prac-
tice remains largely untouched by such technology. This article highlights what we consider to be the major obstacles 
to widespread clinical adoption of machine learning software, namely: representative data and evidence, regulations, 
health economics, heterogeneity of the clinical environment and support and promotion. We argue that these issues 
are currently so substantial that machine learning will struggle to find acceptance beyond the narrow group of applica-
tions where the potential benefits are readily evident. In order that machine learning can fulfil its potential in radiology, 
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rather than always being focused solely on development of the technology itself.
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reporting workflow, benefits to the health service and patient 
care cannot be predicted.

Regulations
When software which is designed to have an impact on patient 
diagnosis or treatment is released on to the market, it is usually 
subject to some form of regulation. In Europe, the manufacturer 
must adhere to the Medical Device Directive. Whatever the clas-
sification under the regulations products need to be designed in 
such a way that patient safety is not compromised and that testing 
is carried out to ensure that the product performs as intended. 
Ensuring patient safety may be difficult for certain “black box” 
algorithms, such as neural networks, where outputs and risks 
may be challenging to predict.

Most regulatory regimes require clinical trials to confirm the 
performance of the final design. Ongoing surveillance is usually 
required in order to identify and fix any bugs associated with the 
software. Thus, meeting regulations usually requires significant 
financial resources, and diverse expertise. Costs are generally 
higher if the risk classification is high, which may be the case for 
machine learning algorithms designed to directly impact radiol-
ogists’ decisions.

Furthermore, the current model of device regulation in Europe 
(and in other jurisdictions) assumes that medical products 
are static entities, with any substantial changes to the product 
requiring reapproval. For machine learning algorithms that are 
designed to continually relearn and adapt their outputs in clinic, 
this approach to medical device regulation is impractical.

Health economics
When deciding on whether to invest in particular medical prod-
ucts many healthcare systems utilise economic analysis to inform 
their decision. In the UK, the National Institute for Health and 
Care Excellence ( NICE, www. nice. org. uk) places strong emphasis 
on such data when generating guidance on medical technologies. 
This ensures that developed products have survived a cost–ben-
efit analysis, providing evidence that can facilitate widespread 
adoption in the clinical community. However, even for the most 
simplistic economic analysis methods, such as cost–consequence 
analysis, evidence is required to quantify resource implications of 
the technology, as well as data on the likely clinical benefits. For 
many machine learning algorithms, this is difficult. For instance, 
gathering convincing data on the implications for patient path-
ways of a computer-aided detection algorithm, as compared to 
standard reporting methods, is likely to require extensive testing 
with radiologists under realistic clinical scenarios. Once again, 
this is likely to be expensive, complex and time-consuming.

Heterogeneity of the clinical environment
Machine learning tools cannot be implemented in isolation. If 
machine learning is to be used routinely, software needs to be 
integrated within the hospital infrastructure such that it can be 
easily accessed and used by reporters, according to local pref-
erences, and data can be transferred to and from the analysis 
package as required. However, there are substantial differences 
between hospitals in terms of information technology resources, 

associated restrictions and clinical protocols and workflows. The 
perils of ignoring local circumstances are reflected in the recently 
reported failure of IBM Watson for Oncology to achieve wide-
spread clinical adoption, with the algorithms’ perceived in-built 
bias towards the American healthcare system cited as a major 
reason for lack of sustained uptake outside the United States.4 
However, designing software that is adaptable to many different 
settings is difficult and, ultimately, it may not be possible 
to accommodate all the requirements of different hospital 
environments.

Data ownership
Machine learning research often relies on the use of retrospective 
patient data, acquired as part of standard care procedures. The 
steps necessary to achieve ethical approval in such circumstances 
are well established in Europe and the United States. However, 
if patient data are used to train an algorithm that is then sold 
commercially for profit, issues around data ownership and ethics 
can arise, particularly when data were originally acquired by a 
state-funded healthcare system.5 Furthermore, if the data are 
acquired in Europe and is not fully anonymised, the General 
Data Protection Regulations (GDPR) apply, which requires that 
the processing of personal data is in line with one of the speci-
fied lawful bases.6 If consent is chosen as the lawful basis, indi-
vidual patients must opt-in to allow use of their data for machine 
learning development. This is another hurdle to development 
and obtaining and managing such consent adds extra costs to the 
development process.

Support and promotion
As highlighted by a recent Kings Fund report on adoption of 
innovation in the NHS, significant investment is usually needed 
to promote and support implementation of new technology.7 
Simply generating evidence of impact is not enough to guarantee 
uptake in a healthcare system. If machine learning is to become a 
truly game-changing technology in radiology, support is likely to 
be needed from IT specialists, managers, radiographers as well as 
radiologists to ensure it is properly integrated in clinic. Not only 
does this require protected time (and therefore increased finan-
cial support) but the end users and patients have to be persuaded 
of its’ merits. Significant investment is therefore also required to 
promote the technology, to ensure that clinicians actively push 
the implementation. However, the perceived threat to radiolo-
gists’ role from machine learning, which is often inflated by arti-
cles in the popular press, is likely to make it harder to persuade 
the clinical community of the need for change.

Reflection
Machine learning promises much but given all of the above 
considerations, it is clear that the resources required to push 
machine learning technology into the clinic are substantial. 
Furthermore, it will take more than increased finances to enable 
machine learning to deliver on its promises.

In recent years, there has been some recognition that the chal-
lenges of implementation need to be addressed, rather than 
continually focusing on development of the algorithms them-
selves. For instance, the UK government is seeking to implement 
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recommendations from the life sciences industrial strategy,8 
which references adoption of artificial intelligence and the need 
for funding to help move technology beyond the research arena. 
There is also recognition in the document that issues around data 
ownership, legislation and economic evaluation processes need 
attention if widespread implementation is to become a reality. 
In the United States, the FDA has recently taken a more active 
role in trying to streamline regulatory approval for software, as 
laid out in the Digital Health Innovation Action Plan.9 Another 
positive sign is that the FDA recently approved the first medical 
device that can diagnose disease without input from a clinician 
(IDx-DR). However, despite these new developments and initia-
tives the translational burden placed on new machine learning 
technology remains relatively unchanged.

There are some applications where the benefits from machine 
learning are likely to be so large that there will be sufficient 
backing from a multitude of sources to overcome all the chal-
lenges described (assuming the technology is sufficiently 
mature). For example, cancer screening examinations of the 
breast and lung generate large volumes of imaging data that 
human reporters must examine. Development of a computer 
system that can screen such images automatically would save a 
significant amount of money and reduce the pressure on radiol-
ogists’ time, giving a strong incentive for adoption. The potential 
market for developers of such software would be large, encour-
aging commercial investment.

Furthermore, there are some machine learning applications asso-
ciated with lower risk activities, such as automated segmentation 

of tumours, where the barriers to adoption (particularly in terms 
of regulation) are likely to be less substantial.

However, we argue that for the majority of radiological applica-
tions the balance between potential benefits and likely costs is 
currently weighted too heavily in favour of costs so that wide-
spread clinical adoption is unlikely to be achieved. A funda-
mental change is required if this situation is to be improved.

Perhaps the biggest issue facing machine learning developers 
(particularly those in smaller companies) is a lack of access to 
realistic clinical data. However, widespread sharing of patient 
data requires investment in infrastructure and is associated 
with significant reputational risk for the health provider (as 
demonstrated by negative publicity around projects such as NHS 
England’s failed  Care. data programme). Therefore, in accordance 
with the UK government’s recent statement on artificial intelli-
gence,10 the authors advocate the establishment of data trusts to 
create data sharing systems, and to control data flows in a secure, 
ethical and transparent manner.

Without such actions, there is a danger that the obstacles to 
routine application of machine learning throughout radiology 
will be insurmountable.
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